Published April 3, 2024 | Version 1.1.0
Python Library Open

Out-of-Distribution Detection using DNN Latent Representations Uncertainty

Owner

Description

CEA-LSEA package for Out-of-Distribution (OoD) detection using the uncertainty (entropy) from DNN latent representations. The package has been used with the following applications, the corresponding DNN architectures and datasets:

  • Simple Classification:

    • In-Distribution Dataset: CIFAR10

    • Out-of-Distribution Datasets: FMNIST, SVHN, Places365, Textures, iSUN, LSUN-C, LSUN-R

    • DNN Architectures:

      1. ResNet-18

      2. ResNet-18 with Spectral Normalization

  • Object Detection:

    • In-Distribution Dataset: BDD100k

    • Out-of-Distribution Datasets: Pascal VOC, Openimages

    • DNN Architectures:

      1. Faster RCNN

  • Semantic Segmentation:

    • In-Distribution Dataset: Woodscape & Cityscapes

    • Out-of-Distribution Datasets: Woodscape soiling, Woodscape-anomalies, Cityscapes-anomalies

    • DNN Architectures:

      1. Deeplabv3+

      2. U-Net

In all the above cases, the DNNs were slightly modified to capture epistemic uncertainty using the Monte-Carlo Dropout by adding a DropBlock2D layer.

Files

Files (29.2 kB)

Name Size Download all
md5:51c5f5748e41fb108e33fc4c8921b0c7
29.2 kB Download

Additional details

Trustworthy Attributes
Reliability
Robustness
Engineering roles
ML-Algorithm Engineer
Use cases
Vision
Functional Set
Operation
Robustness
Functional maturity
Technological maturity