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Chapter A

Introduction

Addressing the safety and security challenges of complex Al systems is critical to fostering trust
in AL In this context, robustness refers to the ability to withstand or overcome adverse con-
ditions, including digital security risks. Ideally, performance should not deviate significantly.
Robustness matters for a number of reasons. First, trust in any tool depends on reliable per-
formance. Trust can degenerate when an ML system performs in an unpredictable way that is
difficult to understand. Second, deviation from anticipated performance may indicate important
issues that require attention. These issues can include malicious attacks, unmodeled phenomena,
undetected biases, or significant changes in data. Ensuring that a model is performing accord-
ing to its intended purpose under different changes and perturbations is the first priority of the
robustness’s topic.

In this document, we present the work that has been done during the second year of the Con-
fiance.ai program on the methods and tools related to robustness of artificial intelligence models
and their applications to real industrial problems proposed by the program industrial partners.
The following document details the methodological progress and numerical results obtained in 6
research and development topics that are strongly interconnected. As an introduction we propose
to the reader a short overview of each section.

Environment Alterations of AI models One of the most common approaches to ML water-
marking relies on poisoning of the training dataset with specially crafted samples. Such pro-
cessing embeds multiple legitimate backdoors into the model behaviour that can be later used
by the owner to claim the ownership of the watermarked model. First, we implement and test the
state-of-the-art techniques. Second, we apply watermarking to the Renault’s Welding Inspection
use case. We are able to reproduce the results obtained on the public datasets. We analyze and
compare three types of watermarking techniques (unrelated, noise, and content). Finally, we test
the robustness of the proposed watermarking techniques against a fine-tuning attack.

Robustification methods based on Neural Differential Equations We investigate the prob-
lems and challenges of evaluating the robustness of Differential Equation-based (DE) networks
against synthetic distribution shifts. We propose a novel and simple accuracy metric which can
be used to evaluate intrinsic robustness and to validate dataset corruption simulators. We also

9



10 CHAPTER A. INTRODUCTION

propose methodology recommendations for evaluating different aspects of neural DEs’ robust-
ness and comparing them with their discrete counterparts rigorously. We then use this criteria
to evaluate an inexpensive data augmentation technique as a reliable way for demonstrating the
natural robustness of neural ODEs against simulated image corruptions across multiple datasets.
Finally, we provide a solid image purification benchmark with Air Liquide’s cylinder counting
dataset, a novel corruption-robust system architecture and in depth validation.

Conformal prediction for time series In our chapter we present some methods to apply Con-
formal Prediction to time series data, on the use case of Demand Forecasting by Air Liquide.
Conformal Prediction (CP) is an approach to Uncertainty Quantification that does not require
special assumptions on the predictive model (neural network, random forests, etc.) nor on the
data itself. It can be used in any supervised learning task, such as regression or classification, at
the cost of some additional data.

CP yields prediction intervals that are guaranteed to capture the true value of the target at a
coverage level (e.g. 90%) specified by the user, according to their operational need. This method
can also be applied to “conformalize” en existing model without re-training: the size of the
prediction intervals will depend on the uncertainty measured during the calibration process; this
can help the user to assess the quality of such predictors on their own data. In our application, the
CP procedure is updated online, at each iteration, further improving its empirical performance.

Data Subsampling for Bayesian Neural Networks: A predictive model that is trustworthy
and robust is required to be able to provide an uncertainty associated to its prediction. This
uncertainty quantification by design is difficult in deep learning as neural networks correspond
to strongly non-linear function with a high number of tunable parameters (biases and weights).
In this context, Bayesian Neural Networks (BNNs) are able to compute their prediction uncer-
tainty by modeling the distribution over these parameters given the training data set. Despite
the fact that BNN cannot be trained by a minimization, we show in this document how to use
a noisy gradient descent (Stochastic Gradient Langevin Dynamic) to sample the neural network
parameters and thus compute the model prediction uncertainty. In constrast with regular neural
networks, we show that naively using sub-sampled mini-batches to train BNN results in poor
predictive performances. Going beyond the state of the art, we introduce a corrective term that
we call "noise penalty" and show that BNNs recover good predictive performances while trained
on mini-batches. In particular, we demonstrate numerical results based on the Air Liquide de-
mand forecast use case. We have developed a software demonstrator that will be delivered and
integrated in the confiance.ai environment.

Influence Function for time series

Lipschitz networks for robustness by-design Robustness to L2 perturbations such as adver-
sarial attacks can be addressed by using 1-Lipschitz networks. These networks provide a mean
to handle the trade-off between accuracy and robustness with a parametrizable loss function.
We propose multiple losses for 1-Lipschitz networks for binary and multiclass classification.
We compare the performance of these losses on the Renault Welding use case. In addition to
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classification tasks, we also demonstrate how 1-Lipschitz networks can perform very well on
semantic segmentation tasks, especially on Valeo Woodscape dataset. Finally, a more theoreti-
cal work on orthogonal convolutions is presented. This work was implemented in the deel-lip
library in order to provide new capacities to build 1-Lipschitz networks.






Chapter B

Environment Alterations of AI models
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B.1. Introduction

In this study, we investigate the behavior of Al models against environmental alterations. We
have studied a set of perturbations that can be applied:

» Evasion attacks consist in perturbing the model inputs by including well calculated noises.

* Patch attacks, a more realistic attack that can printed and positioned on an object or in the
environment.

13



14 CHAPTER B. ENVIRONMENT ALTERATIONS OF AI MODELS

* ML Watermarking consist in perturbing the model behavior by a set of legitimate back-
doors in order to enable model identification.

* In addition to these studies, we present DebiAl a web data exploration and visualization
tool that allows us to identify dataset biases and errors and compare the model’s perfor-
mance and the results.

B.2. Evaluation against Evasion attacks

The objective of this activity is to evaluate the behavior of neural network models against evasion
attacks (adversarial examples). At the beginning of the confiance.ai program, a review of the
state of the art was launched on adversarial attacks. In this deliverable, we briefly recall the
evaluated attacks. As a use case, we have selected the RENAULT use case, which consists on
training models for welding quality classification. Regarding the models, we use models from
batchl that are designed to be robust against environmental perturbation. The rest of this section
is organized as follows. First, we recall the principles of some adversarial attacks. Then, we
also recall the principle of the robustification methods used in batch! to train models. Then, we
present the obtained results.

B.2.1 Brief state of the art

In this section, we present a brief state of the art of: 1) evasion attacks and 2) robustification
methods. For more information or mathematical details, we invite you to consult the deliverable
ISX-EC4-LIV-1498 of batchl entitled "Robust & Embeddable Deep Learning by Design".

B.2.1.1 Evasion attacks

Generating an adversarial attack involves adding a small perturbation to the input sample so
that the output label is misclassified. Formally, let x be the original input data sample, f be the
classifier, and y = f(x) be the label associated with x. A data sample x’ is considered an adverse
sample of x when x’ is close to x under a specific distance metric while f(x") # y.

Auto-PGD attacks A new technique to identify adversarial attacks was introduced in Croce
and Hein [2020] under the name AutoAttack (Auto-PGD). It comprises of a technique to more
accurately measure the resilience of the given model. Three issues with traditional PGD attacks
that the authors recognized as a driving force behind this method specifically in Croce and Hein
[2020]:

* Fixed step: Even for difficult problems, solving the maximizing issue with a fixed step
size is not ideal problems. Indeed, this value has a big impact on how well the attack
works.

* Budget-agnostic: Authors demonstrate that there is a loss plateau after a few repetitions.
As a result, the number of iterations is not a reliable indicator of the attack’s power.
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* Lacking trend awareness: The method does not take into account how successfully the
optimization is evolving and cannot respond.

In APGD (Auto Projected Gradient Descent), the primary idea is to divide the available Ny,
iterations into two phases: 1) an initial exploration phase in which one searches the feasible set
for excellent initial points, and 2) an exploitation phase in which one attempts to maximize the
information already collected. The step size is gradually decreased to manage the transition be-
tween the two phases. Although the update step in APGD is typical Croce and Hein [2020], this
approach differs from traditional PGD in that the step size across iterations is chosen according
to the overall budget and the stage of the optimization. Additionally, the maximization resumes
from the best point thus far determined once the step size is decreased.

Other attacks Fast Gradient Sign Method [ Goodfellow et al., 2015, FGSM] creates adversar-
ial examples by adding noise to the original sample along the gradient directions. Two iterative
extension of FGSM, namely the Basic Iterative Method (BIM) by Kurakin et al. [2017] and the
Projected Gradient Descent (PGD) [Madry et al., 2018a], have also been used in the recent
literature.

The Jacobian-based Saliency Map Attack (JSMA, Papernot et al. [2016]) generates adversarial
examples using forward derivatives (i.e., model Jacobian). JSMA iteratively perturbs features
and/or components of the input one at a time, instead of perturbing the whole input to fool the
classifier.

Universal Adversarial Perturbations (UAP) Moosavi-Dezfooli et al. [2017] are a special type of
untargeted attacks that consist on creating a constant perturbation that successfully misclassifies
a specified fraction of the input samples.

Patch attack (PA) Brown et al. [2017b] is a special case of attack that consists on pasting a patch
of any shape, generated using a given optimization method (ex: FGSM) on the original input,
so as to fool the machine learning model. An adversarial patch attack may be made a universal
perturbation too.

DeepFool (DF) Moosavi-Dezfooli et al. [2016] is an untargeted attack based on computing the
minimum distance between the original input and the decision boundary.

B.2.1.2 Robustification techniques

Adversarial training Madry et al. [2018b]

Itis a methodology for training during conflict. With the use of machine learning to automate
critical processes, this approach attempts to provide a comprehensive practical implementation
of adversarial training. The objective is to provide several adversarial training techniques, to em-
phasize the essential techniques and difficulties associated with adversarial training techniques.
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The general principle of these methods is to inject noisy data into the Training phase to robustify
the model.

Randomized smoothing [écuyer et al. [2019], Cohen et al. [2019b]

In theses techniques the smoothing is a random function. This approach seeks to create
reliable models for regression and classification. It also makes it possible to empirically verify
the robustness of the generated model. Randomized smoothing offers verified accuracy for
classification tasks up to a given distance from the source of disruptions. It offers an interval for
regression tasks where the forecast is assured to be accurate.

B.2.2 Obtained results

The objective of this work is to evaluate the behavior of robust models, trained by robustification
techniques, against powerful adversarial attacks such as the auto-pgd attack. The question is,
what is the maximum intensity that we can apply on the images. This maximum intensity should
be realistic. For this purpose, we have chosen three welding images (the first row of figure
B.1) and we have applied three perturbations (the second row of figure B.1) successively of
maximum intensity 1%, 5% and 10%. Visually, an intensity of 10% is considered important and
we considered not to test disturbances higher than 10%.

Figure B.1: Image from welding UC under perturbations.

For this purpose, we selected three adversarial attacks (FGSM, PGD, APGD). For each of

the attacks, we evaluate maximum intensity values ranging from 1% to 10% with a step of 1%.
The tables (B.1, B.2 and B.3) below show the robustness evaluation of models from batchl on
UC welding, against APGD, PGD and FGSM attacks.
The results show that the best model in terms of robustness against adversarial attacks is the
one trained using "Adversarial Training" and "the technique trades". For more investigate the
behavior of these two models, we display in the figure B.2 the evolution of the robustness against
APGD attack of these two models. Another interesting result is the behavior of the same model
against all attacks. In this context, the figures B.4 and B.3 show the behavior of the two selected
models against FGSM, PGD and APGD.
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Table B.1: Results of A-PGD attacks on robust models

17

Network Metrics
Accuracy Accuracy (%) Accuracy (%) Accuracy (%)
(%) attack intensity = 1% attack intensity = 5% attack intensity = 10%
before attack
vanilla_Laplace_0.1 98.67 09.93 0.0 0.0
vanilla_Laplace_0.2 99.33 39.73 0.0 0.0
vanilla_Laplace_0.5 98.01 82.11 0.0 0.0
vanilla_Laplace_1.0 80.13 80.13 80.13 80.13
vanilla_Laplace_3.0 80.13 80.13 80.13 80.13
vanilla_Laplace_4.0 80.13 80.13 80.13 80.13
vanilla_Laplace_5.0 80.13 80.13 80.13 80.13
vanilla_Laplace_6.0 80.13 80.13 80.13 80.13
vanilla_Laplace_8.0 80.13 80.13 80.13 80.13
vanilla_Uniform_0.1 80.13 80.13 80.13 80.13
vanilla_Uniform_0.5 95.36 73.50 0.0 0.0
vanilla_Uniform_1.0 80.13 80.13 80.13 80.13
vanilla_Uniform_2.0 80.13 80.13 80.13 80.13
vanilla_Uniform_3.0 80.13 80.13 80.13 80.13
vanilla_Uniform_5.0 80.13 80.13 80.13 80.13
vanilla_Uniform_6.0 80.13 80.13 80.13 80.13
vanilla_Uniform_7.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_0.1 100 29.80 0.0 0.0
vanilla_Gaussian_0.2 99.33 21.85 0.0 0.0
vanilla_Gaussian_0.5 97.35 66.88 0.0 0.0
vanilla_Gaussian_1.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_2.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_3.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_5.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_6.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_7.0 80.13 80.13 80.13 80.13
convnet_trades_epsilon8_beta6 92.71 86.75 18.54 0.66
convnet_adv_training_epsilon8 98.67 96.68 16.55 0.0
1007 --e N --- Adversarial Training
Tl TS~ --- Trades
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Figure B.2: Behavior of two best models against adversarial attacks (model trained by adversar-
ial training (green curve) and trained by Trades (red curve))
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Table B.2: Results of PGD attacks on robust models

Network Metrics

Accuracy Accuracy (%) Accuracy (%) Accuracy (%)

(%) attack intensity = 1% attack intensity = 5% attack intensity = 10%

before attack
vanilla_Laplace_0.1 98.67 09.93 01.32 01.32
vanilla_Laplace_0.2 99.33 39.07 0.66 0.66
vanilla_Laplace_0.5 98.01 84.10 01.98 01.98
vanilla_Laplace_1.0 80.13 80.13 80.13 80.13
vanilla_Laplace_3.0 80.13 80.13 80.13 80.13
vanilla_Laplace_4.0 80.13 80.13 80.13 80.13
vanilla_Laplace_5.0 80.13 80.13 80.13 80.13
vanilla_Laplace_6.0 80.13 80.13 80.13 80.13
vanilla_Laplace_8.0 80.13 80.13 80.13 80.13
vanilla_Uniform_0.1 80.13 80.13 80.13 80.13
vanilla_Uniform_0.5 95.36 78.14 04.63 04.63
vanilla_Uniform_1.0 80.13 80.13 80.13 80.13
vanilla_Uniform_2.0 80.13 80.13 80.13 80.13
vanilla_Uniform_3.0 80.13 80.13 80.13 80.13
vanilla_Uniform_5.0 80.13 80.13 80.13 80.13
vanilla_Uniform_6.0 80.13 80.13 80.13 80.13
vanilla_Uniform_7.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_0.1 100 29.80 0.0 0.0
vanilla_Gaussian_0.2 96.77 11.50 0.0 0.0
vanilla_Gaussian_0.5 97.35 67.54 02.64 02.64
vanilla_Gaussian_1.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_2.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_3.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_5.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_6.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_7.0 80.13 80.13 80.13 80.13
convnet_trades_epsilon8_beta6 92.71 91.39 28.47 07.94
convnet_adv_training_epsilon8 98.67 98.01 24.50 01.32

80+

60

40 1

Correct predictions (%)

204

T T
0.00 0.02 0.04 0.06 0.08 0.10
Attack strength (eps)

Figure B.3: Behavior of model trained by Trades
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Table B.3: Results of FGSM attacks on robust models
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Network Metrics
Accuracy Accuracy (%) Accuracy (%) Accuracy (%)
(%) attack intensity = 1% attack intensity = 5% attack intensity = 10%

before attack

vanilla_Laplace_0.1 98.67 02.64 01.32 01.32
vanilla_Laplace_0.2 99.33 58.27 01.32 0.66
vanilla_Laplace_0.5 98.01 90.06 03.31 02.64
vanilla_Laplace_1.0 80.13 80.13 80.13 80.13
vanilla_Laplace_3.0 80.13 80.13 80.13 80.13
vanilla_Laplace_4.0 80.13 80.13 80.13 80.13
vanilla_Laplace_5.0 80.13 80.13 80.13 80.13
vanilla_Laplace_6.0 80.13 80.13 80.13 80.13
vanilla_Laplace_8.0 80.13 80.13 80.13 80.13
vanilla_Uniform_0.1 80.13 80.13 80.13 80.13
vanilla_Uniform_0.5 95.36 83.44 05.29 04.63
vanilla_Uniform_1.0 80.13 80.13 80.13 80.13
vanilla_Uniform_2.0 80.13 80.13 80.13 80.13
vanilla_Uniform_3.0 80.13 80.13 80.13 80.13
vanilla_Uniform_5.0 80.13 80.13 80.13 80.13
vanilla_Uniform_6.0 80.13 80.13 80.13 80.13
vanilla_Uniform_7.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_0.1 100 60.26 0.66 0.0
vanilla_Gaussian_0.2 99.33 37.08 01.32 0.66
vanilla_Gaussian_0.5 97.35 78.80 05.29 03.31
vanilla_Gaussian_1.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_2.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_3.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_5.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_6.0 80.13 80.13 80.13 80.13
vanilla_Gaussian_7.0 80.13 80.13 80.13 80.13
convnet_trades_epsilon8_beta6 92.71 90.72 51.65 23.17
convnet_adv_training_epsilon8 98.67 98.01 72.84 17.21

Correct predictions (%)

100 1

80+
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40
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T T
0.04 0.06
Attack strength (eps)

Figure B.4: Behavior of model trained by Adversarial Training
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To summarize the results, we can conclude:

Models trained by adversarial training and trades are more robust than models trained by
Randomized smoothing.

The adversarial attack, APGD, is more powerful than PGD and FGSM.

On the welding images, applying APGD with 5% of intensity is considered significant as
the most robust model loses 74% of its initial performance.

B.3. Patch attacks

B.3.1 Brief state of the art

Although invisible adversarial examples (very slightly modified images) have received strong
attention from the computer vision community [Szegedy et al., 2013, Biggio et al., 2013, Kurakin
et al., 2017, Madry et al., 2018a, Cohen et al., 2019a], Nguyen et al. [2015] and Brown et al.
[2017a] have introduced a new threat which was relatively not considered by the community.
This threat, named adversarial patches, are modifications of a small region of an image able to
strongly perturb the behavior of deep networks (Fig. B.5).

Classifier Output

place sticker on table

slug snail orange

Classifier Output

—
toaster banana piggy_bank  spaghett

Figure B.5: Figure from Brown et al. [2017a]: a toaster patch is added to a banana image leading
the targeted network to predict toaster instead of banana.

Precisely, Nguyen et al. [2015] is not directly related to attacking mechanisms but offers
strange images (see figure B.6), which seems to maximize the activation of the network. Ad-
versarial patch attacks tend to have a similar mechanism: the goal is to force a specific dynamic
into the network resulting in a very different behavior.
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Figure B.6: Strange images from Nguyen et al. [2015] related with strong activation of a targeted
deep network.

An important feature from Brown et al. [2017a] is that the patch can be easily created in the
physical world. Contrary to invisible adversarial examples, which rely on exact modification
at the pixel level, patch attacks rely on a very salient modification which can be more easily
constrained to be physically possible. Figure B.6 illustrates the adversarial effect of placing a
patch in the scene.

B.3.1.1 From classification to detection

Adversarial patches in the context of classification raise a question: is it an issue that the classi-
fier thinks that there is another object while there is something?

This question leads most adversarial patch papers to focus on detection instead of classifica-
tion: the model is not expected to produce only one label for an image but also a set of labelled
bounding boxes. Each box is expected to contain an object with the corresponding label. The
mAP (mean Average Precision) usually measures the quality of a detector. The mAP is the mean
of the AP (Average Precision) for each class of the dataset. The AP assumes that each produced
box has a confidence level. The first step of AP computation is to sort all boxes by decreasing
the order of confidence (i.e. most confidence box first). The second step is to loop over all boxes
(following the previous order). The current box is compared with the ground truth. If this box
overlaps sufficiently' with a ground truth box, then it counts as a true positive. Otherwise, it
counts as a false alarm. Then, one can remark that each added box can only increase the ratio of
ground truth boxes correctly detected (called the recall). But, an added box can either increase
or decrease the ratio of good detection over the set of boxes previously considered (called the
precision). So, each box corresponds to a new 2D point defined by recall and precision. The

ITwo boxes are considered as highly overlapping if the area of the intersection over the area of the union (IoU)
is below some threshold.
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Third and final step to compute the AP is to consider the area under this curve’. The AP merges
the missing detection and the false alarm to produce a single value summarizing the overall
performance.

An essential point of this chapter is that most papers on adversarial patch like Thys et al.
[2019] try to decrease the mAP of a detector. Here we are focusing on attacking object detectors,
but recently Nesti et al. [2022] introduced a patch for semantic segmentation that produce state-
of-the-art attacking results.

B.3.1.2 Main attacks on CNN detectors

The two main papers on attacking CNN detectors are Liu et al. [2018], Lee and Kolter [2019].
Both attacks rely on a kind of unconstrained PGD optimisation [Carlini and Wagner, 2017] on
the predefined area of the patch. Training (i.e. optimising the weights) of deep network is done
by minimising a loss. Loss of CNN-based detector is usually a mix of:

* an objectness term which forces the model to produce boxes correctly matching the ground
truth;

* a cross entropy term for each predicted box which forces the model to label the box ac-
cording to the ground truth;

* aregression term which improves box localisation.

The only difference between Liu et al. [2018] and Lee and Kolter [2019] is that:

* in Lee and Kolter [2019], the patch is designed by maximising the detection loss with the
optimisation variable being the value of the patch. So, the optimisation targets all types of
errors (wrong boxes, wrong label or wrong position) to improve the loss.

e In Liu et al. [2018], the adversarial patch is crafted by minimising this detection loss but
with a false ground truth (minimising with the correct ground truth will tend to improve
performance which is not the hacker goal). This false ground truth discards all true boxes
but adds ones directly on the patch. This attack tends to put less emphasis to box localisa-
tion and box labels to focus on the production of boxes which is biased toward producing
both false positives on the patch and false negatives everywhere else. Note that, initial
results from Liu et al. [2018] are plagued by the apparition of NaN values into the patch.

B.3.1.3 Attack on transformer

Previous attacks targeted classical CNN. It is now clear that the community is smoothly moving
toward transformer-based architectures like ViT [Dosovitskiy et al., 2020] for classification or
DETR [Carion et al., 2020] for detection. Using model loss, it was straightforward to try to create
patch attacks against these architectures. However, the first attempts of such attacks failed [Shao
et al., 2021, Benz et al., 2021, Mahmood et al., 2021]. It has been shown that what looks like

ZMore precisely, it is the area of the closest decreasing function.
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Figure 2. Example of dot-product (self-)attention mechanism for clean (left) and adversarial patch attack (right) settings. Here, g, &, and
v stand for projected queries, keys, and value tokens of input features. Left: dot-product attention computes dot-product similarities of a
query with all keys, which is later normalized using softmax to obtain per token attention weights. These are multiplied with value tokens
to control their contributions in an attention block. Right: Attention-Fool losses optimize the adversarial patch in input at X3 to maximize
dot-product similarity of all the queries to the key k3 (marked in red/black) , which corresponds to moving k3 closer to the queries cluster.
The increase in dot-product similarity of queries with k3 misdirects the model’s attention from image content to adversarial patch.

Figure B.7: Figure from Lovisotto et al. [2022] representing the expected effect of the patch
designed to break attention mechanism.

robustness was, in fact, just a kind of gradient masking due to the softmax operation in the inner
layer of transformer architecture.

Recently, Lovisotto et al. [2022] showed that transformers are as vulnerable (maybe even
more vulnerable) than classical CNN architecture thanks to an attack targeting the attention
mechanism of transformers.

For a each head £, an attention head is given by

W5 Q" (WeK")"
Vi

where 0", K" and V" are the matrices of queries, keys and values respectively, W2, W,? and
1
Vi
is to optimise the patch such that for each j, H(Wth(WgKh)T) ji-|| is maximised where i
correspond to the projected key associated to the patch area. In other words, we want that all
queries give exclusive attention to the patch key, as pointed out by figure B.7. To summarise,
the goal is to maximise the number of queries that devote their attention to this key. The authors

obtained a powerful attack as depicted in figure B.8.

An(Q,K,V) = softmax Viw)

W‘ﬁ’ are (learned) projection matrices and a scaled factor. The idea of the attention attack

B.3.1.4 Going further in physical implementation: adding the constraint of being stuck
on a surface.

The works from previous subsections deal with the passage from a physical patch to a digital
patch after sensor acquisition (plus common transformations such as the requirement to be re-
silient to the point of view change). However, there is a final requirement for deployment: if
the patch is a physical object, it should have a physically possible position. The patch can not
just float in the air as pointed out by figure B.9. Moreover, the patch should not be too visible
otherwise it may be remove by normal users.

In the scope of the confiance.ai program, we try to evaluate if the effect of the patch attack
was still critical by restraining the patch by this localisation constraint. In particular, we consider
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Figure 1. Comparison of clean and adversarially patched input for DETR [2]. The patch shifts a targeted key token towards the cluster
of query tokens (middle column). For dot-product attention, this effectively directs the attention of all queries to the malicious token and
prevents the model from detecting the remaining objects. The right column compares queries’ attention weights to the target key, marked
by a red box, between clean and patched inputs and highlights large attention weights drawn by this adversarial key.

Figure B.8: Figure from Lovisotto et al. [2022] representing the critical impact of the offered
patch attack.

This square patch is stuck on advertising signs.
LLLLLL TP B
|

Figure B.9: Taking into account the necessity to embed a physical patch on the scene: the patch
can be stuck on the road or on a traffic/ad sign but not just float in the air.
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a patch attack in remote sensing data restrained to an individual roof. As remote sensing becomes
more and more used by states’, one can paint on a house roof an adversarial patch. Other users
can not remove such patches as the roof may be the property of the hacker (and painting our
house roof is usually not prohibited). We take advantage of classical remote sensing datasets
like AIRS Chen et al. [2019a] to consider a single roof patch attack. We use the AIRS building
footprint ground truth to

* train a semantic segmentation model to predict the building footprint (on one half of the
dataset),

¢ select roof from the other half of the dataset,

* evaluates how a patch attack restricted on this particular roof disturbs the prediction of the
network in the neighbourhood.

Figure B.10 illustrates our results.

Preliminary experiments indicated that restricting the attack to a roof (versus using a square
with the same area and same centre) has no impact on performance degradation.

However, those experiments should be continued as the current impact is only moderated.
We have to determine today if it is due to the nature of the image, the code which computes
the patch and/or the fact that segmentation is somehow more robust than detection (which is the
main target of patch attack). Nesti et al. [2022] introduced a patch for semantic segmentation
that shows encouraging results.

B.3.1.5 Contextual effect

Works from the previous section try to attack different types of architecture or emphasis physical
implementation. First works decreasing the mAP of the detector, one can see that their effects
are mostly on the patch level. Yet, one may wonder if the effect can be around the patch rather
than only on the patch, as pointed out in figure B.11.

Depending on the targeted system, one effect can be more dangerous than another, even at an
equivalent mAP level. Suppressing detection only on the patch can be relevant for camouflage
purposes and/or to break a surveillance system. Inversely, suppose one considers an emergency
steering system in an autonomous car. In that case, it is not in the interest of a potential hacker to
stop being detected by the system (because it directly puts the hacker at risk). In this last context,
the main threat is if a patch on a wall creates a false negative on the road, i.e., contextual effect.

It is essential to evaluate more precisely than just global mAP decreasing. A pioneering
paper on this subject is Saha et al. [2020], which develops attacks and defences for contextual
adversarial patches. They introduced the idea of removing false positives on the patch when
computing the mAP. They proposed a universal blindness attack targeting one chosen class, an
objectness attack, and a targeted attack.

3See  for example www.lemonde.fr/pixels/article/2022/08/29/experimentee-dans-neuf-departements-la-
detection-de-piscines-non-declarees-par-intelligence-artificielle-va-etre-generalisee_6139439_4408996.html
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Figure B.10: Illustration of the idea of attacking a physical surface. Here first row represents
image, second row represents building footprint, and third row represents patch attack restricted
to the central building.
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Figure B.11: Above just decreasing the global performance, a patch attack can have qualitatively
different kind of effect: mAP can be decreased by adding a lot of false alarms (typically on the
patch) or by suppressing detections specifically on the patch (i.e. backdoor and/or immunity
idol) or by suppressing detections all around the patch.

B.3.2 Obtained results on welding use case

The objective of this section is to evaluate the robustness, against patch attacks, of classification
models developed for welding use case. In order to assess the effect of the patch size on the
attacks success rate against the models, three sizes were considered: 8x8, 16x16, and 32x32
pixels. Also, in order to check if the degraded performance of the model is not merely caused
by the presence of a perturbation, whatever its type is, we considered non optimized patches,
simple stickers, generated randomly or simply one-color black or grey squares. The results are
given in Table B .4.

As we can notice on table B.4, even with a simple non optimized patch, the model perfor-
mance drops with 60% or even 72% when using a 32x32 [<- proposition] patch on data from
class "Retouch". The grey and black patches are not that successful on data from class "Normal"
but the random patches reach 35% misclassification on these data. The optimized patch does,
with no surprise, much better than that (62% success rate) with 32x32 size but astonishingly
less good results with the smaller patches 16x16 or 8x8. It is an interesting results that must be
investigated more thoroughly in the future.

In order to get an idea about the different patches placement on the images and their effect
on the classification, some samples are given in Figure B.12 while both classes, "Normal" and
"Retouch", are considered in evaluation.



28

CHAPTER B. ENVIRONMENT ALTERATIONS OF AI MODELS

ML Patch Patch size 32x32 Patch size 16x16 Patch size 8x8
Normal 62.90% 15.58% 7.34%
Retouch 92.89% 27.23% 8.02%

Black patch Patch size 32x32 Patch size 16x16 Patch size 8x8
Normal 6.45% 9.62% 4.96%
Retouch 72.79% 31.83% 8.55%

Grey patch Patch size 32x32 Patch size 16x16 Patch size 8x8
Normal 8.23% 10.62% 4.66%
Retouch 67.13% 22.49% 5.56%

Rdm patch Patch size 32x32 Patch size 16x16 Patch size 8x8
Normal 34.62% 12.10% 8.04%
Retouch 59.85% 64.14% 49.70%

Rdm patch Patch size 32x32 Patch size 16x16 Patch size 8x8
Normal 33.63% 12.70% 6.75%
Retouch 60.58% 65.10% 50.38%

Table B.4: Patch attacks (first row) and simple perturbations (following four rows) effect on
welding UC ML model performance.
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B.3.2.1 Conclusion and outlooks

It has been shown in the previous results that the welding classification model is vulnerable,
even against very simple patches that reach success rate of more than 70%. This is obviously an
alarming situation that must be taken into account in the future models that must be robustified.
Nonetheless, the carried out experiments on patch attacks against welding use case were per-
formed in a purely digital way, by changing directly the images pixels, without testing the effect
in a physical context. It would indeed be more realistic (and easier) to change the scene since
accessing the system software is much more challenging. The evaluation of the criticality of the
situation would be more objective with such a scenario. Finally, the patch attacks were evaluated
on the welding use case, a model dedicated to a classification task. It would be interesting to
consider the same type of attacks against detection models.

B.4. ML Watermarking

The objective is to investigate how ML watermarking can be used to protect the ownership rights
of models creators and ensure traceability of ML models. First, state-of-the-art ML watermark-
ing techniques are implemented and tested. Second, ML watermarking is integrated within the
Renault’s welding inspection use case and its impact on the accuracy of the concerned model is
evaluated.

B.4.1 Brief state of the art

Training deep neural networks is not only computationally expensive but also requires specialist
knowledge and vast amounts of training data. Therefore, selling pre-trained models became a
new lucrative business model. Unfortunately, once the models are sold, they can be copied and
redistributed. Even exposing model as a service does not protect them against copying, as model
extraction attacks have shown the ability to reproduce a model hidden behind a MLaaS inter-
face [Tramer et al., 2016]. Therefore, a novel research track aims at providing traceability tools
and techniques that make possible to identify models theft or misuse. Among others solutions,
ML watermarking seems particularly promising in the context of protection of ownership rights
[Kapusta et al., 2020]. Vaguely inspired by watermarking in the multimedia domain, ML water-
marking enables models traceability thanks to the embedding of specially crafted perturbations
into the marked models. An ML watermark can be defined as any specific modification of the
network that can be used to identify its origins [Uchida et al., 2017, Zhang et al., 2018, Adi et al.,
2018].

B.4.1.1 Watermarking techniques

ML watermarking techniques can be roughly divided into two main categories - white-box and
black-box - with regards on their verification settings. White-box watermarking techniques con-
sist in embedding of a secret mark (ex. a binary vector) into the models parameters or architec-
ture, therefore allowing the ownership identification only in a white-box setting [Uchida et al.,
2017] whereas black-box watermarking enables verification with only access to model’s inputs
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Figure B.13: Illustration of the three main of black-box watermarking present in the literature.
From left to right: clean sample from the dataset, content watermark, noise watermark, and
unrelated watermark.

and outputs, as the secret mark has the form of an abnormal behavior of the model. White-box
watermarking is less practical as it requires access to the model parameters and architecture. The
black-box verification is less restrictive and can be performed with only access to the model’s
API, as it only needs an analysis of reactions of the model to a special set of key inputs [Adi
etal., 2018, Zhang et al., 2018]. The possibility of verification of the watermark without access-
ing the model’s internals is the major advantage of the black-box approach over the white-box
technique. As of now, black-box watermarking techniques are dominating the state-of-the-art.

In more detail, black-box watermarking uses the over-parametrization of the neural networks
to modify their behavior for a set of chosen key inputs. In fact, the technique is nothing else
than inserting legitimate backdoors into a network by the model creator. There are three main
approaches to the generation of the (key input, label) pairs that will be used as watermarks
(illustrated in Figure B.13). The first strategy adds a meaningful content to the image of a
dataset and changes its label. The second strategy adds irrelevant images to the training set and
labels them with a predetermined class. The last strategy injects noise into the images of the
datasets and changes their labels.

An efficient black-box watermarking should embed pairs that are clearly tied to the owner’s
identity and in a way that makes them hard to remove, while preserving the network functional-
ity. During the verification process, the key inputs will be necessarily revealed. Therefore, it is
important to embed multiple key inputs in order to allow multiple verification checks.

B.4.1.2 Attacks on watermarking

There are three main categories of attacks against watermarking [Kapusta et al., 2020, Wang and
Kerschbaum, 2019]:

¢ watermark removal, where an attacker tries to remove the watermark from the model.
They can use techniques such as fine-tuning, compression or fine-pruning, which will
weaken the strength of the marks. Techniques used for backdoor detection and removal
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can also serve to erase black-box content watermarks. Moreover, any transformation (in-
tentional or not) of the network may potentially have an impact on the watermarks.

* ambiguity attack, where an attacker will cast doubt on the legitimate ownership by pro-
viding counterfeit watermarks. The easiest way to create confusion is to insert a different
set of watermarks into an already watermarked model.

* evasion attack, where an attacker will try to escape watermarks verification and therefore
disable the model identification. This can be achieved using a query detector that inspects
if a query is a clean one or a possible verification attempt.

B.4.2 Preliminary results

The three black-box watermarking techniques were implemented and tested. Preliminary tests
were realized on the CIFAR-10 dataset. As watermarking content and noise are similar (wa-
termarking noise can be seen as a variant of the content technique), the focus was put on the
comparison between the baseline model and models watermarked with content or unrelated
techniques.

Results presented in the Table B.5 have shown that the watermarks are clearly detectable
after being embedded during training. The accuracy on the trigger sets for both content and
unrelated techniques reaches 100%. When testing the trigger sets on a non-marked model or on
a model marked with a different technique, the accuracy drops significantly.

The impact of watermarking on the model accuracy is in Figure B.14. Although at the
beginning of the training there are some differences between the baseline and the three marked
models, the final accuracy does not significantly differ. The slightly better accuracy of the model
marked with the content technique can be at first surprising, but it comes from the fact that initial
watermarks where included in the test dataset (and the model learns easily to recognize them
without mistake).

Table B.5: Watermarking accuracy for the content and unrelated watermarking approaches.

Model Dataset Trigger set content Trigger set unrelated
model_baseline 91.21% 4% 8%
model_content_100 91.57% 100% 12%
model_unrelated_100 89.2% 11% 93%

A different test aimed at investigating the noise watermarking technique. In more detail,
the amount of the generated noise used to mark the key inputs of the watermarks was varied
and the accuracy of the watermark detection was measured (see illustration in Figure B.15 and
comparison in Table B.6). It shows that clearly detectable watermarking can be achieved with
17% of noise perturbation introduced in the key inputs.
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Figure B.14: Comparison of the three main watermarking approaches during training.

Table B.6: Watermarking accuracy for the noise watermarking technique in function of the noise
strength (measured as the number of pixels changed in a 32x32 image).

Number of pixels changed 100px 170px 256px 500px 1000px
Accuracy 44% 96% 100% 100% 100%

B.4.3 Results on the Welding Inspection use case

We implemented and tested the three same black-box watermarking techniques on the Renault
Welding inspection use case. For each watermarking technique that we implemented, we com-
pared it to a baseline model with the same architecture: a resnet model composed of 4 hidden
layers that we will refer to as "baseline_model" in this document. The training procedure con-
sist of 50 epochs with a SGD optimizer (Stochastic Gradient Descent with momentum) with a
starting learning rate of 0.001. Each other model presented in this document will follow the
exact same architecture, with the same training procedure — the only differences will be in the
presence of various trigger-set during training. When a model is modified, for example during
fine-tuning removal attack, we will explain the modifying procedure at that point.

B.4.3.1 Unrelated

The first method we tested on this use case was the unrelated watermarking method. It consists
in backdooring some data, unrelated to the original dataset during training. For a classification
problem, the idea is to assign a specific class to each data point, and train the model with the
original dataset of the use case combined with this smaller dataset of unrelated data. This smaller
dataset is called the trigger-set. Then, during test time, each data point of the trigger-set will be
evaluated. In the perfect case, the model should be able to correctly identified each data point of
the trigger-set correctly (i.e. to its corresponding class).
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Figure B.15: Varying the amount of noise in the watermarking noise approach by changing
pixels to random values. From left to right: 100 pixels changed, 170 pixels changed, 1000 pixels
changed .

Table B.7: Nominal result of un-watermarked model (baseline)

Network Metrics
Accuracy Precision Recall F1 score
model_baseline 88.08 86.82 99.12 92.56

The strength of the proof of ownership depends on the statistical probability that a random
model (i.e. not specifically trained on the trigger-set) would correctly classify each data point of
the trigger-set correctly. For a classification problem with M different classes and for a trigger-
set of N elements: the probability of a random model to correctly identify all N data points is
ﬁ. Thus the strength of the ownership proof depends both on the number of classes of the se-
lected use case and the size of the trigger-set. On this specific use case we deal with the smallest
possible number of classes for a classification problem as it’s a binary classification problem.

For this method we decided to test various sizes of the trigger-set in order to try and increase
the watermarking strength and proof capacity of our model, and to compare the nominal per-
formances of our model to the original use case. The proof capacity corresponds to the number
of simultaneous watermarks added to a single model. As a matter of fact: each watermark can
only be used once because using it as a proof of ownership would require to expose it. It would
then become trivial to removed it.

We hypothesized that the nominal performances should slightly decrease as we increase the
size of the trigger set. For that, we used pictures from an open-source dataset: the Stanford-Al
Cars dataset [Krause et al., 2013]. It is composed of 16 000 labeled cars images. We created
two different trigger-sets, one with only 10 car images and one with 100 images to evaluate the
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Figure B.16: Logo used for content watermark.

Table B.8: Comparison of nominal performances for content watermark

Network Metrics

Accuracy Precision Recall F1 score
model_baseline 88.08 86.82 99.12 92.56
model_content_10 88.74 86.92 100 93.00
model_content_100 89.40 88.80 98.23 93.28

impact of the size of the trigger-set during the watermarking of the model.

In our first exploration tests, we were able to retrieve the watermark completely for the
trigger-set of size 10, without impacting the model’s performances. However, for the trigger-set
of size 100, we were never able to completely recover the watermark (the best model had a 76%
accuracy for the watermark recognition). We should investigate this approach further as it isn’t
clear whether it is a hard limitation.

B.4.3.2 Content

The second method we decided to test was the content watermarking method. It consists in
adding a semantic information into a sample of the original dataset, and to train the model into
recognizing the semantic information and to classify it in a specific class. In our work we choose
the logo depicted in Figure B.16 as our semantic information. Other studies have also used text
written directly on the images. We choose to always add it on the top left corner in order to be
consistent with its placement, to help the network recognize the watermark. Again, we tested two
sizes for the trigger-set: one with 10 images and another with 100 images. For this watermarking
method we were able to incorporate the watermark without impacting the model’s performances
— compared to the “baseline_model” in Table B.8. Further work could focus on trying to add
multiple content watermarks to a single model in order to evaluate the proof capacity of such
approach to an industrial use case.

B.4.3.3 Noise

The third and last method we tested on this use case was the noise watermarking method. Sim-
ilarly to the two previous methods, it consists in adding a specific information to a sample of
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Figure B.17: Various amount of noise added for the noise watermark

the dataset, to try to make the model learn the association between this information and a spe-
cific class. Opposite to the content method, here, the added information does not contain any
meaningful semantic information. It consists of a specific random noise. More precisely, for a
data recognition problem, a number of pixels will be changed to correspond to a specific random
pattern. For each image of the trigger-set the same noise is applied.

For the noise watermarking method, we tested various amount of noise to add in each pic-
tures of the trigger-set. We expected that, the more noise was added, the more identifiable the
watermark would become. On the other hand, adding too much noise could decrease the perfor-
mances of the model. Moreover, if the noise becomes too important and covers the majority of
each picture of the trigger-set, then, each data point of the trigger-set will became approximately
the same. It would greatly reduce the strength of the ownership proof. In order to avoid that, the
images used for the trigger-set should not entirely be transformed into noise.

We chose the amount of noise according to previous studies summarized in Table B.6 and
decided to evaluate the watermark recognition accuracy of the same absolute total information
of noise and the same relative information of noise. As the previous study was done on 32x32
images and we are evaluating it on 224x224 images we evaluated the watermark for the fol-
lowing number of modified pixels: {100, 170, 256, 500, 1000, 4900, 8330, 12540, 24 500,
49000}.

We were able to reproduce the previous results obtained on the public dataset of 32x32
images for the same relative amount of modified data used for the noise watermark. Thus con-
firming that a minimal quantity of noise is necessary to be able to recognize the watermark. We
also evaluated the influence of the size of the trigger-set over the watermark recognition as we
hypothesized that the size of the trigger-set could have an influence over the recognition of the
watermark. Figure B.18 shows that a larger trigger-set can result in a greater recognition of the
watermark for some amount of noise included (here: 4 900 and 8 330 pixels changed).

On the other hand, we also analyzed the performances of the model on the use case to see if
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Figure B.18: Comparison of noise watermark recognition accuracy based on the number of
modified pixels

the addition of the noise watermark was any detrimental to the model’s nominal performances.
We observed that for a small noise the training performances of the model were completely re-
duced. For each watermark added with less than 4 900 pixels modified, the networks were not
able to satisfyingly classify the welding pictures (see Figure B.19).

We interpret this result as the fact that the watermark creates a competition for the classifica-
tion of originally correct weld pictures (classified as “OK”). Thus, when we only add a small
noise, it is more difficult for the model to differentiate between noisy and non-noisy images (wa-
termarked and un-watermarked images). On the other hand, when the noise is more important,
the model can more easily learn the noise pattern rather than the semantic information presented
in the weld pictures used for the trigger-set.

B.4.3.4 Fine-tuning attack

Another scope of this study was to evaluate the robustness of these watermarks. For this reason,
we evaluated the fine-tuning attack for watermark removal (see Section B.4.1.2 on the attacks
on watermarking). We evaluated various number of fine-tuning epochs over a model already-
trained with a watermark. As preliminary results were unable to remove the watermark, we
tried a more aggressive fine-tuning attack. We chose a learning rate of 10 for 10, 15 and 20
epochs. With this procedure we where not able to remove the watermark as all the test data used
for watermark recognition were still correctly classified by the model, even though we were
reducing the model nominal performances significantly (see Table B.20).



B.4. ML WATERMARKING 37

0.8 1
0.6 4
:
"4
[V,
0.2 - = trigger_set = 10%
= trigger_set = 20%
—»— trigger_set = 30%
0.0 - - —»— Modele sans watermark
00 170 256 500 1000 4900 8330 12544 24500 49000
Quantité de pixels modifiés

Figure B.19: Comparison of nominal performance for noise watermark based on the number of
modified pixels
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Figure B.20: Evolution of model’s performances during the fine-tuning attack
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B.5. Visualization Tools

B.5.1 Introduction

This section aims to present visualization tools that can be used to represent and analyze data
generated from the different Environment Alteration frameworks. First, we introduce the no-
tion of Data Visualization. Then we present DebiAl (a visualization tool developed by IRT-
SystemX), its workflow, a practical example and finally some benefits and limitations.

B.5.2 Data Visualization

Data visualization is a field that deals with the graphic representation of data and information. It
is a particularly efficient way of communicating when the data is numerous, for example a time
series.

This representation can be considered as a mapping between the original data and graphic
elements (lines or points in a chart). The mapping determines how the attributes of these ele-
ments vary according to the data. In this light, a bar chart is a mapping of the length of a bar to
a magnitude of a variable.

In other words, data visualization is the practice of translating complex data into a visual
context, such as a map or graph, to make data easier to understand and pull insights from. The
main goal of data visualization is to make it easier to identify patterns, trends, and outliers in
large data sets.

B.5.3 DebiAl

DebiAl is an open-source web data exploration and visualization application that aims to facili-
tate the process of developing Machine Learning models, especially in the stage of: data analysis
and the model performance comparison. DebiAl provides features to:

1. Identify biases and errors in the input, results, contextual® or ground truth data;

2. Make a comparison of the performance of ML models according to their contextual re-
sults;

3. Select and create sets of data graphically for further analysis or (re-)training purposes;

4. Quickly create and share statistical visualizations of data.

DebiAl has a Graphical User Interface with a complete data visualization toolkit offering
many statistical analysis tools.
B.5.3.1 Workflow

DebiAl is a high level data exploration tool for data scientists and machine learning experts. It
is designed to be easily integrated in project workflow.

“a context is all attributes from data that provide meaning to the dataset’s background
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The main way to provide data to the application is through the DebiAl Python module. The
module was designed to be used directly in the Python workflow, to add model results directly
after its evaluation for example.

DEBIAI can be used both before the modeling phase, to understand, characterize and sum-
marize data, and afterwards, to interpret the result of a model with respect to input data, contexts
or features.

The workflow can be decomposed into:

1. Project creation

* Data formatting

* Data loading
2. Model evaluation

¢ Results insertion

* Results contextual comparison
3. Data analysis

¢ Data visualization

¢ Data selection

B.5.3.2 Example: Randomized smoothing applied to Renault UC

Project creation

my_debiai = debiai.Debiai(DEBIAI_ BACKEND URL)

debiai project = my debiai.create project(DEBIAI PROJECT NAME)

Figure B.21: Project creation code

First, we have to run the DebiAl instance and configure a specific address by specifying
DEBIAI_BACKEND_URL . Then create a project by specifying its name (DEBIAI_PROJECT_NAME) ,
as seen in Figure B.21.

(ie: If the project already exists, you can get the project with:

debiai_project = my_debiai.get_project(DEBIAI_PROJECT_NAME))
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Project data insertion

Each data point that you want to insert must be associated with:

* An ID: considering that the dataset and the results are inserted in two different steps, an
ID is recquired for each inserted data in order to match them later.

* A type: text, number or boolean .
* Alabel: inputs, groundTruth , contexts , or others.

The type and the label are used for authorizing (or suggesting) specific data manipulation or
visualizations.

To do so, a block structure must be defined, with at least one object containing the following
keys see Figure B.22:

* [name : for setting the ID column

* /inputs , groundTruth , contexts , or others: optional lists with the type and the name of
the columns of your dataset.

The added data need to follow the previously defined block structure. They can be numpy
array or pandas DataFrame as in Figure B.23.

block structure = [
f

Figure B.23: Data Sample

Model metadata and model results insertion

The first step is to set, for the results, the equivalent of the block structure: each result must
have an ID (to map them with the data), and a type.
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To do so, an expected results must be defined (the equivalent of block structure, but for
the results), with a list of objects containing the "name" of the column, and the "type" ("text",
"number" or "boolean"). There is no need to set the ID column: the ID column is set by default,
with the same name it has in the block structureB.24.

The added data need to follow the previously defined block structure.

debiai project.set_expected results(expected results)

Figure B.24: Result block structure

Data Visualization

In this section we will illustrate the use of DebiAi on a use case. The chosen use case
is Renault’s welding inspection. We will compare the different results obtained on applying
adversarial attacks (FGSM and PGD) and robustification techniques (randomized smoothing).
For more information or mathematical details, consult the deliverable ISX-EC4-LIV-1498 of
batch 1 entitled "Robust & Embeddable Deep Learning by Design".
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Figure B.25: Data Selection Phase

Dashboard: Data Selection
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Widget: Point plot
The point plot displays points in 2D space and averages as line chart, bar chart or scatter plot. It
can be used to compare models’ performances with the project contexts.

Line Chart - Average Results: The figure B.26 shows a visualization of the average precision
of 7 attacked models (1 vanilla model and 6 models trained by randomized smoothing).

Point plot

Attack power / precision

— Average

0.9

precision

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p Attack power Y

Figure B.26: Line Chart: Average Results
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Line Chart - Results Grouped by "Tags": Figures B.27 and B.28 show one interesting feature
of DebiAl: grouping results according to a "tag" (ex. "model name", "Attack name", ...)
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Figure B.27: Line Chart: Results Grouped by Network Name
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Figure B.28: Line Chart: Results Grouped by Attack Name
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Widget: Data distribution

The data distribution widget displays the distribution of a given feature or result. It can be used
to compare models’ inputs and outputs.

Average Results: The figure B.29 shows a visualization of the models’ result distribution.

Model result Distribution

Density (%)

, Model result

Figure B.29: Distribution Visualization: Raw Results

Results Grouped by Attack Name: The figure B.30 shows a visualization of the models’
result distribution grouped by the type of attack.

Model result Distribution Grouped by Attack name

Density (%)

, Model result ~

Figure B.30: Distribution Visualization: Results Grouped by Attack Name



B.5. VISUALIZATION TOOLS 45

Widget: Confusion Matrix

The confusion matrix widget is useful for classification problems. It shows the number of true
positives, true negatives, false positives, and false negativesB.31.

Confusion matrix

Model result (Predicted)

Approved (Truth)

Figure B.31: Confusion Matrix: Average Results

Widget: Statistics

The statistics widget displays the average, standard deviation, and minimum and maximum val-
ues of the selected data points for a feature B.32.

Statistics

Model result n Num
in Ma

M X Average Std VELEL TS
0 1 0.2715 0.4462 0.1991

Figure B.32: Standard Statistics
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B.5.4 Conclusion

The benefits of using DebiAl
* It can be used with many use cases (images, time series ...)
e It helps find bias in the data
* It gives a lot of meaning to the contextual data

e It is well-suited for live presentations

Current limitations

* DEBIAI is in beta. A release is already available and has given very interesting results on
many Al projects (ex. EC1, EC4, ECS, ...).

* There is a maximum sample count: a DebiAl project with more than 100.000 samples
will have some performance issues when using specific visualization widgets. It can be
noted that some of the projects that have been using DebiAl have been able to make some
successful analysis with more than 350.000 samples.

* Display of images or signals: In its current version, DEBIAI does not allow the display
of input data such as images or signals, but it does allow the display and analysis of data
related to these images or signals, which are then considered contextual data.

B.6. Conclusion

In this chapter, we examined the behavior of Al models designed to be robust against envi-
ronmental alterations such as evasion attacks and adversarial patches. The obtained results
demonstrated that models trained by adversarial training are more robust than models trained by
randomized smoothing. We were able to show the vulnerability of industrial models to patch-
attacks, even for not optimized patches. For future works we would like to be able to add physi-
cal patches to the Renault’s Welding use case rather than create digital patches to the dataset. In
addition, we evaluated three state-of-the-art ML watermarking techniques (content, noise, unre-
lated) applied to the Renault’s Welding Inspection use case. The obtained results demonstrated
that all three ML watermarks introduced into the marked model are well detectable and thus
allow to identify the network. Moreover, we tested the robustness of the noise-based watermark-
ing against removal attempts based on fine-tuning. First results have shown that watermarking
can resist fine-tuning. On this topic further works should be produced to fully evaluate water-
marking techniques and their robustness. Lastly, we presented DebiAl, a web data visualization
application. We tested DebiAl on a use case and have shown its usefulness in result analysis and
comparison, as its ease of use and flexibility.



Chapter C

Robustification methods based on
Neural Differential Equations

Contents
Cad Introduction . .. .. ...ttt iiieeeennneneeeeennnns 48
C.2 On evaluating common robustness forneural DEs . . ........... 49
C.2.1 DS-inspiredneural DEs . . . .. ... ... ... 0. 51
C.2.2 DS-basedneural DEs . . . .. ... ... ... ... ... . ..., 51
C.23 DS-destinedneural DEs . . . .. ... ... ... . ... ..., 52
C.2.4 Intrinsic robustness metrics . . . . . . . . . . ..o 53
C.3 Denoising Diffusion Probabilistic Models . ... .............. 53
C.3.1 Denoising Diffusion Probabilistic Models . . . . .. ... ... ... 53
C.3.2 Score-based Modeling and Neural Differential Equations . . . . . . . 55
C.3.3 Purification pre-processing asadefense . . . . ... ... ...... 57
Cd4 Experiments . . ... ..o vv i vt tiueeennssoseonesossos 60
C.4.1 Noisy learning for Neural ODEs versus ResNets . . . ... ... .. 60
C.4.2 Air Liquide Cylinder Counting: Desnowification by image purification 65
C.5 Conclusion and Perspectives . . . . v ¢« v ¢t vt vt vt ot o e v oo oaos 71

We investigate the problems and challenges of evaluating the robustness of Differential
Equation-based (DE) networks against synthetic distribution shifts. We propose a novel and
simple accuracy metric which can be used to evaluate intrinsic robustness and to validate dataset
corruption simulators. We also propose methodology recommendations for evaluating different
aspects of neural DEs’ robustness and comparing them with their discrete counterparts rigor-
ously. We then use this criteria to evaluate an inexpensive data augmentation technique as a
reliable way for demonstrating the natural robustness of neural ODEs against simulated image
corruptions across multiple datasets. Finally, we provide a solid image purification benchmark
with Air Liquide’s cylinder counting dataset, a novel corruption-robust system architecture and

in depth validation.
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C.1. Introduction

Neural Ordinary Differential Equations (NODEs) Chen et al. [2019b], conjoining dynamical sys-
tems (DS) and machine learning (ML), have come to be a popular source of interest, in particular
for tackling generative problems and continuous-time modeling, and seem to have a bright future
among the ML community. Nevertheless, many questions regarding their robustness have been
raised, creating a debate on whether these networks benefit from natural robustness properties
or if the latter are overestimated.

Likewise, the importance of reliability in real-world applications with Al-driven decision-
making in safety-critical systems have brought a lot of attention to studying a model’s behavior
under distribution shifts. Understanding the latter implies focusing on how feasible is a chosen
model’s domain generalization against the kinds of shifts that may occur in real-world scenarios.
The past few years have seen an emerging industry proposing new and relevant shifted datasets
for different actors and purposes. Numerous benchmarks Hendrycks and Dietterich [2019], Mu
and Gilmer [2019], Koh et al. [2021], Salehi et al. [2021] addressing different aspects of dis-
tribution shifts have come to light and the rigorous analysis and evaluation of both models and
benchmarks have become increasingly important. Although they transfer poorly to real-world
shifted images, synthetic distribution shifts are a good starting point for experimenting a new
model’s accuracy and robustness. For instance, in Gilmer et al. [2019] it is hypothesized that
methods that incur into vanishing gradients also show no improvement in Gaussian noise, a
phenomenon which they relate in a rigorous way to adversarial attacks. Corruption robustness
can be then seen as a sanity check to ensure that a proposed adversarial defense method doesn’t
present gradient masking. Nevertheless, it is important to separate accuracy improvements from
robustness improvements when interpreting the results and different metrics have been proposed
for doing so Hendrycks et al. [2021], Taori et al. [2020]. For common corruptions Hendrycks
and Dietterich [2019], the (un-normalized, unaveraged) relative Corruption Error (rCE) is the
difference’ of the model’s corrupted and clean errors. As the very notion of a corruption is
always relative to a clean counterpart, we find that this metric has a particular weakness for
simulated corruptions as it doesn’t take into account the following structural principle under-
lying such corruptions: miss-classified clean images should result in miss-classified simulated
corruptions. As such, the rCE answers questions like "how much does the model decline un-
der corruption inputs" but it doesn’t detect the corruption error contributions coming from clean
miss-classifications.

In this brief account we lay initial ground on theoretical and application-driven aspects,
problems and methodology perspectives for evaluating robustness of NODESs against synthetic
distribution shifts. For this purpose, we

1. assess and highlight several properties of NODESs in connection to different robustness
criteria, link them to specific aspects of real-world data features they may capture and
determine general guidelines on when and how they can be compared to static networks
or between them;

2. introduce an intrinsic robustness metric <!, well-suited for evaluating well-posedness

Precise definitions are recalled in (C.13)
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of dataset corruption simulators, and capable of measuring a model’s corruption accuracy
more subtly than the rCE Hendrycks and Dietterich [2019];

3. evaluate an easy-to-implement robustifying method for NODEs against corrupted images,
leading us to conclude that NODESs are naturally more robust to several synthetic distri-
bution shifts than their discrete counterparts and that noisy learning for NODEs acts, as
expected, as a robustness locus widening.

We aim to propose a baseline upon which to build step-wise incremental implementations of
robustifying methods for NODEs under such corruptions. It is our hope that our proposed metric
and methodology recommendations will be helpful both when studying implicit nets robustness
and when designing new and more diverse corruption simulation algorithms and datasets.

C.2. On evaluating common robustness for neural DEs

Evaluating robustness of NODEs is particularly challenging: their output is computed via it-
erative optimization schemes and such test-time optimization has shown to prevent the proper
evaluation of established robustness methods designed for static networks like AUTOATTACK
in the adversarial context Croce et al. [2022]. Additionally, comparing NODEs to chosen static
analogs has shown to disregard implicit assumptions (adaptive step-size solvers, inexact back-
ward pass computation) which pose methodological problems preventing to formally compare
them and ultimately incurs into falsifying the results of many conducted experiments. We will
concentrate on classification tasks in this report.

Neural DEs meet dynamical systems: Denote &, a feature extractor (FE) and A, a fully-
connected classifier (FCC). The inference of a NODE model is carried out by solving,for 2
denoting the time-derivative:

1) = £(1,2(6),0(0).)
2(0) = () re 7 =0T C.1)

L) = hy(2(T))

Contrary to static architectures, f formalizes the dynamics controlling a continuous-in-depth
model, ¢ € 7, being its depth variable and the components in (C.1) traduce the following fea-
tures: the dependence on A, for z(0) is traduced by input layer augmentation; the dependence
on t for f (resp. 0) is traduced by depth-dependence (resp. depth-variance”) and is taken in
practice as an augmentation component Dupont et al. [2019]; the dependence on x for f (resp.
T) is traduced as data-control (resp. depth-adaptation) and can traduce recurrent architectures.
We refer to Massaroli et al. [2020] for details on these features and to Kidger [2022] for a clear
comprehensive introduction to neural DEs.
In Figure C.1 we rapidly illustrated how neural differential equations work.

* In inference, layers are determined as numerical scheme of a differential equation, so that
the inference time is proportional to the number of function evaluations used by such
solver times times the number of steps used by the numerical scheme;

2When 6 is a constant function, we still use the term depth-dependence.
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Figure C.1: A Bird’s eye view of the mechanism of Neural Differential Equations.

* Gradients can be either stored to be used in the usual way (for back-propagation or for
crafting adaptive adversary attacks) which could be very memory expensive or not stored.
In the last scenario, one uses the so-called adjoint equation of the inference differential
equation, going backwards in inference time, and run this equation in parallel to it in
order to obtain the gradients.
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* If using the adjoint method, learning is done with constant memory since we do not store
intermediate gradients but there are not a priori guarantees that the learned NDE trajecto-
ries will be optimal - and thus necessitating a sub-optimal number of inference NFEs.

Needless to say, several assumptions need to be satisfied by the different components in
(C.1) in order to meet desired properties (such as non intersecting trajectories as ensured by the
Picard-Lindelof theorem). We refer to Kidger [2022] for technical details on these properties.
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Several overlaps occur between ML and DS modeling techniques and approaches which
we now try to articulate to shed light on their singular benefits. These distinctions will be the
basis of our methodology guidelines for evaluating and comparing general Neural Differential
Equation (NDE) models.

C.2.1 DS-inspired neural DEs

These consist in manufacturing constraints on a loss function or on the weight matrices inside
the dynamics that would enhance their robustness from a stability analysis point of view. An-
other way of stating DS-inspired NDEs is to say that the ML focus comes post-hoc the DS
focus: the trained architecture is supposed to have benefit of theoretical properties at training
or inference. We highlight the fact that such approaches can serve different purposes: Pal et al.
[2022], Ivan et al. [2022], Djeumou et al. [2022] address mainly speed problems while Kang
et al. [2021], Yan et al. [2020], Huang et al. [2022] addresses stability training considerations
Li et al. [2019] for NDEs e.g. using steady-states, Lyapunov equilibrium points. This usually
is an idealized analysis made upon an idealized ML architecture. A common problem would
be to neglect the numerical errors that come to hand while training, which were absent from
classical discrete neural networks. First, in Ott et al. [2021] it is shown that there exists a critical
step size only beyond which the training yields a valid ODE vector field. Thus, for instance, the
system theoretic formulation of the Picard-Lindelof theorem, used for ensuring non intersecting
trajectories, effectively applies only if such condition is met.

Methodology point: ensure that the discretization resulting from the numerical solver’s ex-
ecution preserves formalized DS properties. A first characterization of robustness for NDEs is
then met.

C.2.2 DS-based neural DEs

These consist in formalizing NDE architectures as analogs of system theoretic paradigms such as
a full use of the components of (C.1) but also formalizing neural CDEs, SDEs and PDEs Kidger
[2022], Fermanian et al. [2021], Xu et al. [2022], Li et al. [2021]. Here, the ML focus comes
ante-hoc the DS focus: the formalized architecture is supposed to be endowed with structural
characteristics both at training and inference. As an example, inference in neural controlled DEs
will be based on Riemann—Stieltjes integrals of the form

[ 5060 axto) = [0 s)as €2

while the inference of neural stochastic DEs will consist of the sum of a deterministic integral
and an Ito or Stratonovich stochastic integral:

[ 1oty )as+ [ go(s,y(s)) 0aB(s). €3
0 0

This approach is more involved than the previous one as it needs to have at hand simultane-
ously an adapted, analytically proven, adjoint method analog or generalization, and a non empty
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choice of adapted numerical solvers. For instance, Kidger Kidger [2022] adapted the analytic
adjoint method for neural CDEs and neural SDEs while developing for the latter an algebraically
reversible Heun method SDE solver. While NODEs have served as inspiration for constructing
many discrete neural architectures by formalizing in continuous-time an ODE and discretizing
it, the difficulty has been to create continuous time analogs for discrete neural components. For
instance, crafting a stateful batch normalization (BN) layer has been recently reflected in the
NODE formulation Queiruga et al. [2021] as a generalized ODE. On the contrary, in Huang
et al. [2022] ResNets have BN layers, NODEs have group normalization (GN) layers and the
length of the skip connection does not coincide between the compared architectures and in Xu
et al. [2022], although testing NODEs against corruptions, a mix between deterministic and
stochastic methods may weaken their claims.

Methodology point: ensure that the chosen NDE architecture identifies in a clear manner all
arguments of the function passed to the DE solver, determine if the latter is an exact or an ap-
proximate solver; distinguish stochastic and deterministic architectures; comparing NDEs and
discrete architectures should be mathematically justified by an explicit end-to-end discretization
scheme, taking into account the nature of the h, and h, layers and identifying, for instance,
NODE blocks and weight-tied residual blocks. This constitutes a second robustness characteri-
zation.

C.2.3 DS-destined neural DEs

These consist in manufacturing NDEs that incorporate known modeling physical constraints.
Here, the ML focus is ad-hoc to the DS focus: the proposed architecture is supposed to cap-
ture intrinsically the dynamics (e.g. Lagrangians, Hamiltonians) of the studied phenomenon
and NDEs specify DEs Zhong et al. [2020]. This is different, though somehow related, to
physics-informed NNs Karniadakis et al. [2021], which aim to obtain solutions through NNs
to pre-specified DEs for which traditional solvers are computationally expensive. Well-defined
NDEs may not effectively capture continuous-time inductive biases if the used numerical ODE
methods have too low order of convergence while high-order methods need for fast and exact
gradient computations Matsubara et al. [2021], Djeumou et al. [2022].

Methodology point: conduct NDE-oriented numerical convergence tests, presenting a non-
trivial difference between the ML-based Bottou and Bousquet [2007] and the round-off Chaitin-
Chatelin and Frayssé [1996] numerical errors, such as proposed in Krishnapriyan et al. [2022]
to check if the implemented model successfully learned meaningful continuous dynamics. We
then find a third robustness characterization for such networks.

Leveraging well-studied mathematical approaches for stability, robustness and resilience’
into the continuous-time ML community can prove to be very advantageous and the above ro-
bustness properties, while already being studied jointly in the cited works, call for clear distinc-
tions between such notions. Their formal analysis will be the subject of an extended version of
the present report, complementary to the system-theoretic approach which is being conducted in
parallel Gonzalez et al. [2022a].

3For instance, NODEs with depth-adaptation should be evaluate their recovery rate in time affer an input pertur-
bation.
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C.2.4 Intrinsic robustness metrics

We now define the metric .7"! mentioned in the introduction of this report. Let C be a set of
simulated corruptions ¢ = (¢,s), where ¢ is a corruption label and s is a severity level. We make
the assumption that for each ¢ € C one can generate (at least) one corruption simulation x, of a
clean image x. We denote y the true label of x, y.| the model’s prediction on x and y. the model’s
prediction on x.. Let N be the size of the dataset. Define M = ny: 1 =y e =M /N, and for
ceC,

1 N . 1 N
'Qic - N .Zl I{y’c:}rl}7 'gjc - M § 1, I{y’L,:y’& y'd:yl}
= 1=

where I, 1 = 1if yg =y and O else.

Methodology point: the clean accuracy o7 is used to save the model’s parameters during
training; the absolute corruption accuracy <7, gives the model’s accuracy for a corruption c; the
relative corruption accuracy 27" computes how many corrupted simulations x. were correctly
classified among the correctly classified clean counterparts; the positiveness of the rCE remains
a relevant sanity check for debugging and verifying that the above hypothesis is preserved by
the corruption simulator. By leveraging the above-mentioned structural principle for simulated
corruptions, this metric addresses more accurately (in the statistical analysis sense) questions
like "how do corruptions intrinsically behave for this model".

Our experiments show that .7 doesn’t overestimate the model’s robustness and abnormal
behavior* implies that a selected corruption simulation is ill-posed. On the other hand, the Rela-
tive mCE increasingly underestimates it, as highly accurate models will see a greater proportion
of their miss-classified corruptions to come from miss-classified clean samples, making .7, to
decrease while clean accuracy increases, as shown in Fig. 3 of Hendrycks and Dietterich [2019].
This phenomenon is confirmed in Figures 5—8 of Mu and Gilmer [2019] where miss-classified
clean images represent 12% of the shown examples and none of them incur into well-classified
associated corruptions.

C.3. Denoising Diffusion Probabilistic Models

In this section we present DDPMs in their analytic formulation, we derive their associated neu-
ral DEs and learning procedure giving a few examples of their numerical integration schemes.
Then, we tackle the sampling speed problematic showing a trade-off between accuracy and
speed among SDE & ODE solvers, the latter being faster but less accurate. Finally, we present
the denoising method for purifying adversarial attacks and highlight the fact that ODE solvers,
while faster than their SDE counterparts, are much more brittle to such attacks. This fact sheds
evidence on the importance of constructing fast SDE solvers for diffusion-based purifiers.

C.3.1 Denoising Diffusion Probabilistic Models

Let go(Xo) be the unknown data distribution from which each sample xy € R? is sampled. In-
jecting noise through a DDPM defines a forward diffusion process {Xt}te[O,T] with T > 0 which

4Such as unexpectedly observing o7 > 27l
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follows the stochastic differential equation (SDE):
dx, = f(t)xdt+g(r)dw,, t€][0,T] (C4

where w is a d-dimensional Brownian motion, and f,g : R — R are called the drift and diffusion
coefficients of the diffusion process x; respectively. These are designed so that the end-time
process distribution g7 (x7) ~ .4 (x7|0, 51,) for some & > 0, where ¢, (x;) denotes the marginal
distribution of x; at time 7.

As an example, define the linear noise schedule B (7):=Bmin + (Bmax — Bmin)f between two
chosen extrema 20 =~ Bax > Bmin =~ 0. Then the forward SDE, which is the first and non-neural
component of a DDPM, reads

1
dx, := —Eﬁ(t)x,dt—i- VB()dw, t€[0,T]  qo(X0) ~ Pdatas
As such, for any ¢ € [0, T], the transition distribution of x, conditioned on X satisfies
4 (%:[x0) = A (x| (1) x0, 0% (1)Ls), (C.5)

where a(z),0(r) € RT are differentiable functions of 7 with bounded derivatives, and we denote
them as o, oy for simplicity. The choice for o; and o; is referred to as the noise schedule of a
DPM and is assumed that the signal-to-noise-ratio (SNR) a? /o7 is strictly decreasing w.r.t. 7.
Variance-Preserving DPMs are such that 6; = /1 — o? i.e. a?+ 6?2 =1 forall t € [0,T] and
6=1.

As a matter of fact, the reverse diffusion "denoising" process has been shown in Anderson
[1982] to be driven by the explicit SDE

dx, = [f(1)% —g*(1)Vx logg:(x,)]dr +g(r)d@,, 1€ [T,0] (C.6)

where & is a reverse-time Brownian motion and dr is a negative time-step. Among the different

components of this reverse SDE, the gradient of the log-density (also named score function)

logg,(x,) is difficult to compute. Score-based generative learning is a framework in which one

sets a neural network that learns to approximate this score function as we will see later on.
While the time ¢ analytic solution to (C.4) w.r.t. an initial value xq is given by

t t
X = Xp +/ F(s)xds + / g(s)dwsy,
0 0
one should be careful not to confuse forward and backward processes for the reverse SDE.

Remark C.3.1. The analytic solution to (C.6) formally given by

T T
Xy = XT*/t (f(s)xs*gz(S)VXJVIOgQS(XS))dS*/t g(S)dLDS, (C.7)

where t — 0 is a reverse time parameter, is equivalent to the following expression, fory; :=x7r_r,

T T
Yo = Yo —/O (f(T = 9)ys —g*(T —5)Vy,loggrs(ys))ds —/O 8(T —s)da,, (C8)
where T — T is a forward time parameter.

In particular, the above Remark stresses the fact that the functions f,g in (C.7) are to be
understood as going backwards-in-time.



C.3. DENOISING DIFFUSION PROBABILISTIC MODELS 55

Data Forward SDE Prior Reverse SDE Data

dz = f(a,t)dt + g(t)dw W— de = [f(z,1) — ¢ () V. log pe(2)] dt + g(t)dw

Figure C.2: Illustration of trajectories following the analytic system pre-determining a DDPM.

C.3.1.1 The Probability Flow ODE

A remarkable property of g,(x;) is that it follows also an associated ODE. Indeed, by the Fokker-
Planck equation, the time-derivative of the marginal distribution g, given by

aq;(txl) = —Vy- (f(t)th;(Xz) - ;gz(t)Vqut(X’)>

= T (Fmax) - 52007 oza )

1
= Vg - <<2g2(t)th logg:(x;) —f(t)x,) CIz(Xt)>
which equals the following Liouville’s equation

2
dx, = [f(t)x,gét)vxtlogq,(xt)} dr. (C.9

which will also be followed by ¢;(x,) and which we will call the probability flow ODE (PFO).

In Figure C.2 one illustrates the analytic mechanism encompassing what will be later defined
as Denoising Diffusion Probabilistic Model (DDPMs): it takes a sample from the data distribu-
tion and gradually destroys its information until it becomes an easy-to-produce noise instance
and then reverses this process to generate a sample from the original data distribution either by
using the Reverse SDE or the PFO.

C.3.2 Score-based Modeling and Neural Differential Equations
Approximating Vy, logg;(x;) by direct regression
ngnEtN@/(OvT) Extwq,(x,) H Se (Xt ’ t) - VX’ IOg 4 (Xl) ||%

is not possible since the score Vy, log ¢;(x;) of the marginal diffused density ¢;(X;) is not tractable.
By writing

alx) = [ aolx0)a(xo)dxg
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we see that if we diffuse individual data points xg, the diffused ¢,(x;|Xp) becomes tractable.
Denoising score matching set

rneinEtN?/(O.,T) Exowqo(xo) EX,Nq,(X, [xo) ||89 (Xl ’ t) - VX: log g, (Xt |X0) H%

which, after expectations, gives an approximation sg(X;,?) ~ Vy log g, (x,) which will be called
data prediction model.

We can further simplify this problem by predicting only the noise to be added or retrieved
to a previous step sample instead of predicting the whole noisy sample. More specifically, let

X, = \/EI'X()‘FMe’ €~ JV(Oal) Then
(% — VG -x0)’ €

Vy logg, (x/|x0) = _VX,T = 5
t 1

so that we can define a noise prediction model
€o(Xs,t) = —0usg(Xy,t)

that is trained by means of

. 1
minE; 7 0,1)Exomao(x0) Eenr (0) 2 e —eq(x:,1)]5.
t

In particular, the noise prediction framework approaches the scaled gradient of the log-
density —o;Vy, logg;(x;) by a neural network &g(x,,) so that the resulting model is formalized
a neural stochastic differential equation

g2 (1)

t

dX; = f(f)X[ +

g0 (x,,1)| dr + g(t)da, (C.10)

which we will call reverse stochastic diffusion process (RSDP). The neural SDE formalism will
then handle the discretization of the RSDP by a SDE solver of our choice. For instance, the
Euler-Maruyama solver fixes a step-size 4 and defines the iteration rule from stot =s—#% as

g*(s)

S

X, =X, — [f(5)X, + go(Xy,8)|h+g(s)Vhe, €~ N (0,1y). (C.11)
As such, DDPMs can be seen as neural differential equations (NDEs) for which we have at
hand a strong inductive bias constraining them, seen as dynamical systems (DS), in the form
of a probabilistic model. In other words, the diffusion SDE is a pre-specified continuous-time
probabilistic model upon which we approximate one of its components by a neural network. As
we argued in Gonzalez et al. [2022b], DPMs are instances of DS-destined neural differential
equations.

Alternatively, one can model an equivalent problem via neural ODEs for the FPO:

(1)
20;

dx; :=hg(x;,0)dt = |f()x,+ €g(x,1) | dt, (C.12)
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for which we have a choice of fast but less accurate solvers. For instance the Euler solver iterates
X, = X; — hg (X, 5)h.
As mentioned in C.3.1, the functions f, g are running backwards in time.

DPM-customized solvers: At a first glance, one can consider the PFO (C.9) as a neural
ODE, in which case the problem of approximating it transforms into approximating the analytic
solution

x,_xs—/thg(xf,r)dr = xs—/t <f(1:)xr—|—g225:)gg(xf,r)> dt

~ odeint(hg,X,s,1)

As such, many works have proposed optimized solvers to speed-up this process by proposing ei-
ther training-free solvers with relatively small improvements or solvers that need further training
to reach acceptable speed Song et al. [2020], Nichol and Dhariwal [2021], Watson et al. [2021],
Tachibana et al. [2021], Luhman and Luhman [2021], Kong and Ping [2021], Kingma et al.
[2021], Jolicoeur-Martineau et al. [2021], Salimans and Ho [2022], Bao et al. [2022], Zhang
et al. [2022]. Recently, in Zhang and Chen [2022], Lu et al. [2022] a further step was made
in this direction. The idea at the heart of the construction of DPM-tailored solvers is to exploit
the semi-linear structure of the PFO and simplify it to formulate a dedicated exponential ODE
solver for it inspired by the construction of exponential RK methods. Their method starts by
considering the general formulation of time-varying semi-linear problems Yang et al. [2022]

x, = elr@drg | / ' (ef;f<r>drgz(f)ge(xﬁf)> dr.

s 261
Then, using the change of variables from Kingma et al. [2021], one can further accelerate this
exponential method and rewrite the analytic solution x, with initial value x; as a sum of a linear
term and an exponentially weighted integral of €y as is done in Lu et al. [2022]. From this point,
by developing the Taylor expansion of €y and fitting ¢ and s as two consecutive time-steps they
develop three algorithms which they show to be, under natural assumptions to be solvers with
orders one to three.

C.3.3 Purification pre-processing as a defense

A distinctive property of diffusion models is that they pull distinct data distributions near to each
other. Formally, let {X(¢)},[0,1] be a diffusion process defined by the forward SDE (C.4) and let
p: and g, the respective distributions of x, when xo ~ po(Xg) and xo ~ go(Xo). Then p;(x) and
¢:(x) are smooth and fast decaying, i.e.,

0 0
lim p,;(x;)=—logp;(x,) =0 and lim ¢/(x;)=—logq,(x,) =0, i=1,....d,

so that a straightforward integration by parts show that

oD (¢
KLa(];tH%) _ _g2( )Dp(pthl‘) <0
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Purified imag}

“Panda”

@/ersarial image : :
“Gibbon” Diffused image

(1] e Purified
1= DiffPure —> — “Panda”
Adi\I/Iel;sgacrlal image Classifier

.............................. > - - -» “Gibbon”

I Adversarial attack (Backpropagation through SDE)

Figure C.3: The Purification framework in its adversarial defense form

where the equality happens only if the distributions p; and ¢, are the same. The repercussion of
this phenomenon is that for each € > 0, one can retrieve a minimum step ¢* such that

DKL(Pt* C]t*) <E

The purification method will then consist on diffusing an attacked sample x, up to ¢* by fol-
lowing the SDE (C.4), denoising the resulting noisy sample x, ,~ backwards to initial time, and
classifying the resulting purified sample X, computed as

g (1)

t

X, = sdeint (X, he (x;,1),1*,0), ho(x;,t) == | f(£)x, + € (x;,t) | dt + g(t)de,,

by a subsequent classifier ypreq = far(X,). We will call * a purification time-stamp and one can
show that retrieving it from the linear and cosine noise schedules can be done in a closed form.

The purification method using DDPMs has been used for defending against adversarial at-
tacks both in empirical and certified approaches in Nie et al. [2022], Carlini et al. [2022]. On the
one hand, empirical adversarial defenses find the purification timestamp from Dgp. and run two
neural SDEs: a first one acting as the purifier and a second one dedicated to back-propagating
adaptive attacks through the adjoint SDE to efficiently obtain full gradients of the defense sys-
tem. Additionally, by fine-tuning an adversarially trained classifier with the generated purified
images incurs in further robustness improvements. On the other hand, certified adversarial de-
fenses through denoised smoothing start from a distribution .4 (x, Gzld) for a given noise level
o and directly compute ¢* in a closed form as the solution to = a’* = ¢2. Additionally, by ex-
ploiting the nature the noise encountered in adversarial attacks, they find that applying a one-shot
denoiser to X, ;+ shows better accuracy than iterative denoisers and is better suited for estimating
robustness certificates that need sampling a large number of noisy instances.
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C.4. Experiments

C.4.1 Noisy learning for Neural ODEs versus ResNets

Table C.1: Mean Jzicrel (%) on corrupted MNIST. A > 5% difference of model’s performance is
colored in orange. The last block computes the improvement on .27 for each model induced by
noisy training w.r.t. clean training. The listed corruptions are 1: gaussian, 2: shot, 3: impulse,
4: defocus, 5: glass, 6: motion, 7: zoom, 8: snow, 9: frost, 10: fog, 11: brightness, 12: contrast,
13: elastic_transform, 14: pixelate, 15: jpeg_compression.

Model | Training | Ag A on Noise A on Common Corruptions (severity 1)

Gaussian (o) Noise Blur Weather Digital

50 75 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ResNet Clean 99.45|98.1 88.9 99.7 99.8 98.8179.9 96.9 99.41981 97.9 99.7 1 97.5 98.8 99.8
ODENet 99.59(99.2 89.2 74.1/99.9 99.9 99.4(82.7 57.3 98.1 99.8(99.5 99.3 93.4 99.9(99.5 77.9 98.8 99.9
ResNet Noisy 99.44 | - - 98.7199.9 99.2 99.8 99.6199.4 99.6 99.8197.8 91.3 99.5 99.9
ODENet ) 99.59 | - - 99.3/99.9 99.9 99.9|91.2 87.1 98.6 99.8199.7 99.9 95.2 99.9]/99.6 95.9 99.7 99.9
ResNet o o |324[02 06 1 [18 359 -39 0207 1.7 264 0.1]03 241 07 0.1
ODENet|  oisy A clean A; 252| 0 0 05|85 298 08 0 |02 06 18 0 |01 18 0.9 0

Table C.2: Mean 27! (%) at changes in corruption severity for MNIST. At fixed (c,s) € C, each
block (in green) contains results for cleanly trained ResNet (upper-left), ODENet (lower-left)
and their noisy counterparts (upper-right, lower-right) The listed corruptions are as in Table 1.
Performance shifts are colored in red. Corruptions where noisy training is not beneficial are
colored in blue.

Sev. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
99.7 99.9199.8 992|988 99.879.9 96.9 93.0199.4 99.6[98.1 99.4[97.9 99.6 99.7 99.8|97.5 97.8 91.3[98.8 99.5(99.8 99.9
99.9 99.9]99.9 99.9)|99.4 99.9(82.7 91.2|57.3 87.1(98.1 98.6[99.8 99.8(99.5 99.7|99.3 99.9]|93.4 95.2|99.9 99.9/99.5 99.6|77.9 95.9/98.8 99.7(99.9 99.9
99.4 99.9199.6 99.9]96.3 99.6 [54.0 75.5]199.1 99.6 98.3 98.8 99.4 99.7 98.6 99.5]99.7 99.9
99.8 99.9(99.8 99.9(98.1 99.7 58.9(50.3 84.5(88.3 92.1[99.7 99.7(98.0 99.5|94.6 99.7|86.6 85.5|99.8 99.9]|99.0 99.3|50.7 82.9/99.1 99.6(99.9 99.9
98.6 99.7]199.4 998|914 99.5(16.1 18.4(13.0 98.7 99.4 96.7 97.9 99.5 91.6 97.6 | 99.7 99.9
99.5 99.9(99.6 99.8(94.0 99.7 16.4 30.4|61.3 65.4|99.5 99.7/93.9 96.1|89.4 99.6|75.8 64.4(99.4 99.9(95.7 98.3|29.0 56.1|95.8 98.7|99.8 99.8
93.7 99.6|98.1 99.4 98.7 [11.1 13.7( 126 98.0 99.2 96.8 93.0 99.250.9 16.9 99.6 99.8
93.8 99.7(98.6 99.6(77.1 99.4| 89 15.2 25.4|35.0 41.5/99.3 99.5/98.5 91.1|89.4 99.5[69.7 58.8(97.4 99.8 95.0(21.2 37.0(79.2 91.6|99.7 99.9
98.9194.9 98.7 95.919.9 11.2]123 183 96.4 98.8 98.7 125.9 14.4 99.5 99.6
76.2 99.2]96.4 99.3|52.8 97.7| 9.6 14.2 19.5|25.0 34.6]99.0 99.287.5 94.3|86.7 99.4|52.2 43.3(93.2 99.7 86.6(16.9 23.8(72.1 84.0(99.7 99.8

We propose a minimalist, yet precise, comparative analysis on the robustness of a simple
NODE (ODENet) and its discrete counterpart (ResNet) against simulated image corruptions.
The chosen models are trained on MNIST with two methods: clean training is done on clean-
only images; noisy training is conducted on a random combination of 50% of clean images and
50% of images added Gaussian noise with randomly chosen ¢ € {50,75,100}. We train each
model on three different random seeds, each trained model is then tested on 3 runs of corruption
simulations and only report the mean of the resulting 9 tests in Tables 1 & 2. We report the mean
of the 3 models clean accuracy .27 used to save each model’s parameters at which the rest of the
tests are conducted.
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Results: Table 1 shows that ODENet is consistently more robust than ResNet and that
cleanly trained ODENet has less necessity of data augmentation to achieve good performances
than ResNet do, as seen in the last lines of Table 1, make us conclude that they are naturally
more robust than ResNet. This experimental result is compatible with those appearing in the
test-time adaptive models literature Sun et al. [2020], Wang et al. [2021]. In light of the study in
Gilmer et al. [2019] relating adversarial attacks as naturally appearing in the scope of common
corruptions, this result can also be thought as a sanity check for determining that adversarial
robustness for NODEs, contrary to what is hypothesized in Huang et al. [2022], might not come
from obfuscated gradients. This fact seems to be further confirmed in Chu et al. [2022] although
we have some reserves on their argument: increasing the time horizon of a NODE should, in
our opinion, rather be linked to the model’s resilience, roughly seen as the speed of convergence
after an input perturbation, while robustness criteria usually focuses on the distances and posi-
tions of inputs incurring on invariance of a model’s prediction. At increasing severity, as shown
in Table 2, notice that, while ODENet is more robust than ResNet on most corruptions, their
decay of robustness is bigger, shifting on some of the corruptions to ResNets as the best model.
Nonetheless, the same shift occur at higher severity levels with noisy trained ODENets. Namely,
for defocus_blur, on clean train mode, the shift was done at level 3 while at noisy train mode it
was only done at level 4. Analogously, for contrast corruption, the shift at severity 4 on clean
train mode was never reached on noisy train mode. This sheds evidence to the fact that noisy
training for ODENets acts as a robustness locus widening i.e. that the robustness neighborhood
of data points x become bigger with data augmentation. Notice that these robustness neighbor-
hoods are threat-model free: they do not depend on the choice of a norm ball as is commonly
considered on gradient-based defenses. Finally, noisy training made ResNet more vulnerable
to corruptions 2 and 6 at severity 1 but this vulnerability got corrected at severity 3. This may
suggest that partial information on the trade-off between accuracy and robustness may be cap-
tured by a notion of model’s deterioration resilience whose rigorous study will be included in
our upcoming extended study.

We give further details on the application of our methodology to the presented experiments:
the chosen corrupt simulation algorithm is shown to be non-trivial along different tested datasets
(no miss-classified clean images incur into well-classified corrupted counterparts); we do not
include corruptions in our train or validation sets, networks share the same &, and A, modules;
weight-tied ResNet blocks correspond to discretized NODE blocks. Since our model is not
DS-destined, we do not conduct a numerical convergence test for the chosen Euler method.

C.4.1.1 Model specifications

All our models share the same FE and FCC modules and the RM modules consist on the same
layers to which one either applies a residual connection (for ResNet) or the odeint function (for
ODENet). In order to favor our ability to compare ResNets and ODENets, we fix the Euler
method as our ODE numerical solver at time range [0, 1] with 0.1 time steps which corresponds
to ten weight-tied residual blocks. Finally, we use Group Normalization (GN) instead of Batch
Normalization (BN) to ensure that the dynamics of the RM module truly correspond to an au-
tonomous NODE.

We train all our models for 100 epochs, learning rate 0.001, milestones [30, 60, 90]; decay
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Table C.3: The FE h, and FCC h, modules are identical for all our ResNet and ODENet models
for MNIST, SVHN and CIFAR. The arguments of Conv2d are in order: the input channel,
output channel, kernel size, stride and padding. Conv2dTime ensures time-dependence of the
convolution component. The two arguments of the Linear layer represents the input dimension
and the output dimension of this fully-connected layer.

Common Modules Sequenced Layers
Conv2d(1, 64, 3, 1) + GN + ReLU
Conv2d(64, 64, 4, 2) + GN + ReLU

he

hy AdaptiveAvgPool2d + Linear(64,10)
RM Internal Layers (input x)
out:=(Conv2d(64, 64, 3, 1,1) + GN + ReLU
ResNet Conv2d(64, 64, 3, 1,1) + GN + ReLU)

out +x
f=(Conv2dTime(64+1, 64, 3, 1,1) + GN + ReLU
ODENet Conv2dTime(64+1, 64, 3, 1,1) + GN + ReLU)
odeint(f, x, [0,1], At=0.1, Euler)

0.0005, L,-penalty 0.2. Both models have around 142k parameters.

While, in (C.1), f formalizes a single layer’s dynamics, it usually is taken in practice to
be a composition of explicit functions that we pass to the ODE solver (a block). Using BN as
a block component holds mini-batch information, which not only cannot be formalized as an
autonomous ODE but may lead to gradient explosion at back-propagation. When comparing
ODENet and ResNet blocks (without BN), one must ensure that each composite function for
a NODE block is both stateful (has an implicit dependence on the integration time) and input-
autonomous (does not present dependence or has leaked information of the rest of the sam-
ples) either at training, validation or testing. We use the ReLU function for practical purposes
(increased performance) after checking that models trained with fully differentiable functions
present the same behavior. We avoid taking into account in our analysis neither neural SDEs,
which can genuinely be seen as continuous-time analog of noise injection robustifying methods,
but whose inference is not deterministic and which do not take into account stateful BN layers,
as they induce depth-varying architectures which do not have a clear discrete counterpart upon
which one could establish a comparative analysis. Choosing the good basis function method
for the latter to achieve competitive results Queiruga et al. [2021] was a long effort, according
to the authors, and hasn’t yet come close to state-of-the-art clean accuracy performances. In
addition, BN which has been shown to be crucial to achieve state-of-the-art robustness perfor-
mances, has also been shown to be a source of adversarial vulnerability and it is unclear if their
stateful counterpart from Queiruga et al. [2021] will present or not this same behavior. Finally,
our discretized NODE block is formulated in terms of weight-tied ResNet blocks and matches
the function to which the residual skip connection is added with the one sent to the ODE solver
and does not match to the total length of convolution blocks present in the architecture. For
instance, appending 10 independent identical residual convolutional blocks does not correspond
to passing a single convolutional block through a ODE solved with fixed 10 Euler steps as the
state space of the NODE is controlled by only one set of convolutional block parameters.
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C.4.1.2 Further Simulation Corrupted Dataset Experiments

We use several datasets and their synthetic corruptions by using the same simulation algorithm
and selecting corruptions that make sense on all datasets. Noisy training is done with randomly
added noise with o € {10,15,25} for the SVHN dataset, and with ¢ € {10,15,20} for the
CIFAR10 dataset. Our experiment’s relative perturbed accuracy is given in Tables 4 and 5 for
SVHN".

Table C.4: Mean /' (%) on corrupted SVHN images for ResNet and ODENet. The listed
corruptions are as in Table 1. The last block computes the improvement on performance for
each model induced by noisy training w.r.t. clean training. Corruptions where noisy training is
not beneficial are colored in blue and a > 5% difference of model’s performance is colored in
orange.

Model | Training | Aq | AX' on Noise Al on Common Corruptions (severity 1)

Gaussian (o) Noise Blur Weather Digital

10 15 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ResNet Clean 94.3 93.7 93.8 95.3 98.9 99.2 1 97.5 97.7 97.2
ODENet 96.3(63.7 44.0 31.7|92.3 91.4 91.1]95.3 96.3 96.8 99.3|83.4 91.8 59.3 99.6|98.8 84.7 98.9 98.1
ResNet Noisy 942 - - 93.2195.2 952 93.9(93.4 94.8 951 989819 91.3 458 99.1|97.4 98.3 97.9
ODENet ) 96.2| - - 96.2 |97.5 97.3 97.0(94.6 96.4 96.5 99.3(86.7 94.6 53.2 99.6(98.1 93.0 99.1 98.8
ResNet o . 731105 12 12 [03 1 -02 0 |45 3 -49 01 ]-0.1 209 06 07
ODENet | NOWy A= clean A5 gy 5155 59 59|07 01 03 0 |33 28 61 0 |07 83 02 07

Results: ODENet is consistently more robust than ResNet and the latter benefited more than
ODENet from noisy training. This confirms our MNIST conclusions on the natural robustness
of ODENet. Notice that noisy training makes the models slightly more vulnerable for some
corruptions. At severity changes, noisy training acts here again as a robustness locus widening.
Interestingly, for those corruptions where noisy training made the model more vulnerable at
severity 1, noisy trained models see their vulnerability remain only on half of those corruptions
at severity 5. Finally, as shown in orange, it seems that noisy training makes ODENet more
resilient to corruption deterioration than it does to ResNet.

C.4.1.3 Further thoughts on corruption simulators and their metrics

Baseline Normalization: Usual corruption metrics such as the mCE/ and the relative mCE/ for
a model f are computed with respect to a baseline (e.g. AlexNet) error in order to normalize it
over those corruptions that are known to be particularly challenging. For (c,s) € C, they are the
average over all 15 corruptions labels ¢ of the clean and corrupted top-1 error rates (averaged
first across all 5 severity levels):

5 5 5 5
CE/ = < Y Ef C) / ( Y E;‘}ClexNet> , rCE/ = < Y El - Eg;ean> / ( Y EfeNet— Eg}g;Net>
s=1 s=1

s=1 s=1
(C.13)

S5The results for CIFAR showing no novel or different behaviour than the one conducted for SVHN other than an
overall drop in accuracy, we do not present them in this preliminary report.
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Table C.5: Mean &7 (%) at changes in severity. The listed corruptions are as in Table 1. Red
color means a shift of best model’s accuracy w.r.t. previous severity value. Corruptions where
noisy training is not beneficial are colored in blue.

. Noise Blur ‘Weather Digital

Model | Training | Sev.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ResNet 1 93.7 93.8 95.3 98.9 99.2 | 97.5 97.7 97.2
ODENet 92.3 91.4 91.1(95.3 96.3 96.8 99.3|83.4 91.8 59.3 99.6|98.8 84.7 98.9 98.1
ResNet 9 84.1 87.0 98.7 97.8195.9 974 95.9
ODENet 83.0 80.8 80.2|86.9 87.1 90.6 99.1|68.1 80.5 48.5 98.9|98.0 63.0 98.9 97.2
ResNet Clean 3 46.2 70.2 98.5 95.5 | 91.9 89.1 94.7
ODENet 67.1 65.8 70.8|45.6 45.7 76.7 99.0|71.0 71.9 33.2 97.4(96.4 35.8 93.9 96.3
ResNet 4 28.0 54.6 98.3 91.9 90.5
ODENet 50.1 44.5 51.2|21.2 35.6 61.3 98.7(62.4 70.1 25.1 94.8|90.7 24.7 75.0 93.3
ResNet 5 21.3 24.7 15.0 85.3 15.4 83.5
ODENet 33.2 33.4 35.1 24.9 53.8 98.3|61.5 64.8 18.8 89.9|78.9 17.7 65.7 87.9
ResNet L [952 952 939[93.4 948 951 989[8L9 913 458 99.1[974 98.3 97.9
ODENet 97.5 97.3 97.0(94.6 96.4 96.5 99.3|86.7 94.6 53.2 99.6|98.1 93.0 99.1 98.8
ResNet 9 90.1 89.1 83.7 85.3 86.4 98.7 36.0 98.0 | 96.0 98.3 97.0
ODENet 94.8 94.0 93.7(85.4 90.0 89.8 99.1|73.8 86.1 42.4 99.0|96.7 84.8 99.0 98.1
ResNet Noisy 3 44.4 70.2 98.6 244 9591923 94.3 96.2
ODENet 88.7 88.6 90.2|45.6 54.4 76.1 98.9|72.6 80.2 29.6 97.5|93.6 66.7 96.7 97.4
ResNet 4 28.3 54.0 98.3 19.3 92.4 93.2
ODENet 78.9 75.5 79.9]26.6 43.2 60.0 98.7(63.0 78.9 25.0 94.8|83.5 51.0 88.0 95.1
ResNet 5 21.3 254 473 97.7 15.3 86.3 [47.3 87.7
ODENet 63.1 65.0 66.4| 17.4 30.0 52.0 98.3|65.1 73.9 19.3 89.9(66.2 34.0 80.7 90.9

We do not normalize our metrics for two reasons. First, the mCE/ was proposed as an attempt to
unify robustness bench-marking under a unique number across many models, which we do not
do here. But most importantly, it has been shown that feature aggregating networks and deeper
nets markedly enhance robustness. Thus, as NODEs consist on a paradigm shift of the notion
of depth, which becomes adaptive even while testing, we find that testing such network against
a baseline fixed depth network such as AlexNet could be harmful for our comparative analysis.
This is somewhat concordant with the last recommendation in Croce et al. [2022] for generating
adversarial attacks for adaptive test-time defenses. We do not average our metrics across severity
levels to analyse their behaviour at increasing severity.

Corruption simulators: Instead of testing our models on static corrupted datasets (MNIST-
C, CIFAR10-C, ImageNet-C), we run the exact same corruption simulator® on the datasets of
all our experiments (and which is the same one used by the authors that proposed the above-
mentioned static corrupted datasets). For simplicity, corruptions that were specially tailored
for MNIST (such as zig-zag or canny edges) that only make sense to be conducted on that
dataset will be left out from our comparative study, as well as fully formalizable corruptions
(such as rotations, translations..) that one can use as auxiliary data augmentation techniques
such as adversarial and S&P noise augmentations. This should be taken into account as a partial
reproducibility issue: while the performance of the considered models should decrease when
tested on compressed JPEG corrupted datasets such as ImageNet-C, the comparative results
conducted in this work do not show any qualitative distinction (although the overall model’s

6 Available at https://github.com/bethgelab/imagecorruptions.
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accuracies decrease). Also, our objective is not to propose an architecture capable of achieving
state-of-the-art robust performances in either of the mentioned datasets. Our choice to fix a
common corruption simulator for different datasets is somehow a model-driven choice. It has
been shown that classification error patterns between robust models and those coming from
human perception are fundamentally different. As such, focusing on understanding a model’s
behavior around simulated corruptions can be improved by fixing one simulator and generating
corruptions among different datasets. This allows to release some part of the randomness of a
generated simulation and prevents different data augmentation techniques to guess a corruption
simulator’s parameters, which in a sense can be seen as information leakage. By using the
corruption simulator as a white-box component of our generated corruption dataset we hope this
will promote better model’s transferability to some degree.

C.4.2 Air Liquide Cylinder Counting: Desnowification by image purification

For the Air Liquide Cylinder Counting we create a baseline for the purification preprocessing
method of desnowification i.e. purifying the presence of snow as a corruption in the image. The
baseline used is from Ren et al. [2019] and consists, as in the experiment above, of a weight tied
ResNet that gradually restores an image and can be seen informally as the Euler discretization of
a particular neural differential equation that we will not explicit in this part. After preprocessing,
we use YOLOVS (large) for object detection. The objective here is to use this architecture as a
baseline from which all ongoing works related to image restoration via diffusion models will be
compared.

Figure C.6 illustrates the baseline purification framework Ren et al. [2019]. It consists on
recursive procedure that unfolds a shallow ResNet and adds a recurrent layer to exploit the
dependencies of deep features across stages.

(R

=1 Recurrent state’ t =2 Recurrent state Recurrent state

Figure C.6: Baseline framework Ren et al. [2019]

Image purifier training specifications:

We select 4 random images from each Air Liquide’s folder ”"WH BATCHES’ (which contains
around 40 videos), and we apply a fixed snow corruption of high intensity. The images are
normalized between 0 and 1 then separated into 100x100 patches. Flipped versions of them are
also considered during training to avoid overfitting.

On this dataset we train a PReNet (with a LSTM block) of width T=6, batch size of 18 and
a learning rate of le-3 (decayed 3 times by a factor 5 through the training). The loss is the
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Structural Similarity Index (SSIM) Wang et al. [2004] that assess perceptual quality differences
between the original and purified image . The the optimizer is Adam and the model was trained
for 100 epochs on two NVIDIA A100 GPUs of 32Gb each.

The trained PReNet purifies images which have been corrupted with the image corruption
framework provided by Hendrycks and Dietterich [2019]. Three gradually increasing snow
intensity levels (low, intermediate and high) are randomly applied following a uniform random
distribution on the test set for validation purposes. Figure C.7 shows one example of the original
image and its corruptions.

Corruptions snow low, intermediate, high

Original Corrupted 1
Figure C.7

Image purifier results:

Figure C.8 shows two examples of image purification from the test set in high and inter-
mediate intensity. Perceptually speaking, the model seems to be subtracting the snow from the
images as the recurrent forward steps (T) unfold. Small details of the bottles that were hidden
by the corruption are now visible. This cleaning effect applies on different types of bottles re-
gardless of its color and size. Also, we notice that the bottles are clearly distinguishable from
the context (i.e floor, truck).

Figure C.9 shows that, as the purification unfolds, the average counting error shrinks from
3.1 bottles/truck to reach a minima of 1.18 and 1.05 for high and intermediate snow respectively.
The counting error tends to stabilize at T=4 afterwards further iterations are not beneficial. The
lower counting error of intermediate snow indicates that the purification task is easier. Com-
paring the obtained results with the reference clean data counting error of 0.951 bottles/truck,
we conclude that the purifying model has not only provided a perceptual but an operational
advantage compared to the classifier alone on corrupted data.

Low intensity performance: Now, we analyze how the purifier behaves in the presence of
little to none amount of snow. Unlike the previous results, rendered images from Figure C.10
are overall darker and small details are not sharply visible. This is because, in the absence of
white snowflakes the purifier attacks small white image features. In consequence, the counting
error tends to increase as the purifying process unfolds until it stabilizes. Hence, exhibiting a
worse performance than the classifier alone as evidenced in figure C.11 and table C.6.

Table C.6 shows a resume of the mean bottle counting error per truck for each snow level and
purifying intensity. In the case of little to none snow, it makes sense not to apply the purification
because the classifier alone accuracy is higher. The major advantage of the purifier is evidenced
in intermediate and high snow events, showing a massive error reduction up to 10.4 bottles/truck.
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Figure C.8
Snow intensity 3 vs T purifier 124 Snow intensity 5 vs T purifier
° ! : Purifier intensity T : : ’ ° ' : Purifier inétensityT : : :
Figure C.9
Snow level\stage 0 1 2 3 4 5 6
Clean 0.95 7.48 10.13 8.16 7.37 6.83 6.29
Low 1.24 1.94 2.0 1.51 1.40 1.29 1.32
Intermediate 3.10 2.16 1.54 1.21 1.08 1.05 1.05
High 11.56 3.02 1.64 1.35 1.18 1.24 1.16

Table C.6: Mean counting error of the pipeline Counter+Purifier at increasing stage width of the
purifier and for increasing levels of snow severity.

Conclusions: As we can see, the purification procedure shows a very different behavior in
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low intensity snow events, imposing for the user the need to monitor the snow intensity before
applying the purification procedure. This weather monitoring can be achieve either using super-
vised or unsupervised learning. A simple yet effective way of detecting this is to check whether
the mean counting error increases in the first step or not. Further development on this subject
will be discussed on the following section. Additionally, one can see that the purified images are
somewhat darker that the original ones, specially at low width levels. As brightness and contrast
of an image has been shown to be standard image corruptions, the fact of obtaining bad count-
ing performances seems to be rather a natural phenomenon. Nonetheless, the reason why these
images seem darker while their corresponding counterparts at intermediate and high corruption
intensity do not become darker remains to be subject for further analysis.

Purification of clean image

Corrupted 1

Figure C.10

Snow intensity 0 vs T purifier Snow intensity 1 vs T purifier

1.94
1.84
1.74
1.6

1.5 °

Mean counting error (# of bottles)
Mean counting error (# of bottles)

1.34

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Purifier intensity T Purifier intensity T

Figure C.11
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C.4.2.1 Real-time weather corruption monitoring

In light of the above, we developed a lightweight, real-time snow monitoring that is able to
detect snow events and their intensities. After careful examination, we use a supervised learning
solution, profiting the data corruption pipeline previously created for the image purifier.

Training specifications:

We trained an image classifier type ConvMixer, firstly proposed by Trockman and Kolter
[2022]. This architecture is compelling due to its high performance and low inference time. As
for the input, we reduce the image size from 992x1024 by a factor of 1/4. In a second, step, we
crop a centered region of 90x90 pixels. The training settings are the following: 5 epochs, a batch
size of 8 images, Adam optimizer with a learning rate of 0.01 and weight decay of 0.01. The
model’s output are four classes: Clean, snow low, intermediate, and high in equal proportions.
To avoid over-fitting, we dynamically change the corruption level of images during training and
validation. Doing so, we make sure the model learns the snow distribution and does not focus on
irrelevant contextual features. Figure C.12 illustrates the overall structure of the monitor. After
training, the model reaches a 81.7% accuracy in a test set of 42 videos.
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Figure C.12: ConvMixer from Trockman and Kolter [2022]

Figure C.13 shows an example of real-time snow intensity monitoring using the trained
ConvMixer. Predictions are consistent for intermediate and high intensity with probabilities of
82% and 66% respectively. Nevertheless, the model has some difficulties to correctly identify
the clean image, labeling it as snow low. On this class, the classification task becomes harder
because the corruption does not alter the original image in a significant way.

C.4.2.2 Weather-robust cylinder counting pipeline

We propose a weather robust cylinder counting pipeline that includes a real-time snow detec-
tor and a snow purifier that dynamically cleanses the image only when needed. Based on the
previous results, the purification initiates only when the image is classified as intermediate and
high level of snow. For little to none snow, the monitoring model sends the image directly to the
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Figure C.13: Examples of snow detection of several intensities.

YOLOVS counting classifier. By doing do, we save inference time and optimize the pipeline’s
overall performance. Figure C.14 shows the proposed snow purification pipeline.

PReNet Snow Purifier
i

No
YOLO v5
» If Snow >
. Cylinder Counting
- I \

Figure C.14: Proposed weather-robust cylinder counting pipeline.

Yes

We then conduct the following tests. First, we provide the reference YOLOvVS mean count-
ing error and its inference time. Next, we consider a corrupted data set consisting of 10 clean
videos, 3 collections of 10 videos with snow at intensity 1,2 and 5 respectively. On this corrupted
set we evaluate the performances of YOLOVS alone, of YOLOvS with a PReNet(t=4) Purifica-
tion preprocessing at t=4 stages and lastly of YOLOv5+PReNet(t=4) first passed through the
trained ConvMix which chooses if the amount of snow is enough for the image to necessitates a
purification. In particular, the ConvMix sends the image to PReNet(t=4) if the snow intensity is
greater or equal to 3.

Results: Table C.7 summarizes the obtained results.

Model Dataset Mean Counting Error Inference time(s)
(ref) YOLO clean 0.9512 0.06
YOLO corrupt 3.4358 0.06
PReNet+YOLO corrupt 1.9743 0.13
ConvMix+PReNet+YOLO corrupt 1.1784 0.131 (mean)

Table C.7: Robust Benchmark on Air Liquide Cylinder Counting

We obtain good accuracy for both the high and low snow intensity regimes with a very low
impact on the inference time. Nonetheless, it seems impossible to go below the mean counting
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error threshold of 1 with the proposed baseline purifier as it never actually reaches that level
across different corrupted datasets and number of stages.

C.5. Conclusion and Perspectives

We demonstrated the superiority of robustification approaches for neural networks based on
neural differential equations or their discretized versions by a multitude of approaches. First of
all, their analytic formulation allows to use a big and rich literature on stability of differential
equations in order to infer ML robustness properties. In particular, by means of an intrinsic
robustness metric whose benefits were shown in the above section, we established in a rigorous
way ResNet-based baselines from which to create solid comparative analyses whose conclu-
sions show the superiority of Neural DE and diffusion approaches for robustification in terms of
quality. Under the Purification approach, we established an useful baseline to retrieve and purify
snow corruption using the Air Liquide’s Cylinder Counting use case. Our approach manages
an average of 1.13 miscounted bottles across all videos with a minimal increment of inference
time. We believe that our baseline method can readily be generalized to other meteorological
corruptions with different levels of intensity, including rain, night and fog. Nevertheless, the
proposed pipeline does not reduce counting error below the ideal threshold of 1 miscounted bot-
tle per truck. In order to reach that performance, better image restoration approaches such as
diffusion-based weather purifiers are needed Ozdenizci and Legenstein [2022].

Future work: Diffusion-based purifiers vastly outperform the restoration capacities of PReNets
and provide protection against unknown corruptions. Nevertheless, the current state of the art
exhibits a prohibitively slow inference time. We currently explore new techniques that allow an
important inference time speedup by means of the following steps:

* Passing from the PyTorch framework to the JAX framework is shown to cut all model
inferences by half.

* Vectorizing the training procedure has been shown to reduce the training time by a factor
of 10.

* Performing the diffusion on the latent space instead of the pixel space importantly reduce
inference time Rombach et al. [2022].

* The use of exponential integrators that fasten inference time by a factor of 10 without
compromising image quality Lu et al. [2022].

Additionally, further exploration on the generalization capabilities of the baseline purifier
and its diffusion-based counterparts under real adverse weather conditions is relevant to ensure
a future operational deployment.
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D.1. Introduction

This chapter presents an application of Conformal Prediction (CP) to time series data, specif-
ically to the use case of “Air Liquide Demand Forecasting”. CP is a distribution-free ap-
proach to Uncertainty Quantification (UQ) in Machine Learning (ML), built around one main
hypothesis: the data samples are exchangeable [Aldous, 1985] or independent and identically
distributed (i.i.d.), which is a special case of exchangeability. This allows great flexibility, as
any model can be “conformalized”, even if its performance is poor or it is misspecified; the CP
procedure will yield valid prediction intervals, for any sample size (see Section D.3 for more
details). However, the time series analysis deals with time-indexed sequential data, which are
inherently not exchangeable. As we show in Section D.3.1.3, researchers had to find a trade-off
between the convenience of distribution-free model-agnostic CP and the guarantees attainable,
such as assuming i.i.d. or “well-behaved” prediction errors, to get some of the conformal guar-
antees.

D.2. Uncertainty quantification with conformal prediction

The work on CP described in this chapter is the continuation of what was carried out during
2021 and the first quarter of 2022, for the action sheet No. 5 of project EC3, within the pro-
gram Confiance.ai. In the ensuing report [Nabhan et al., 2022], we introduced the principles of
Conformal Prediction (CP), some of the most important algorithms, and an application to the
Demand Forecasting' use case built by Air Liquide.

To make this exposition self-contained, we compiled a compendium on CP with texts from
our paper [Mendil et al., 2022], which covers part of the work carried out in the project and
which was published in the proceedings of COPA 202273,

Sections D.2.1, D.2.2 and D.2.3 are adapted from Section 2 in Mendil et al. [2022]. The
incipit of Section D.3 and Section D.3.1 are adapted from Section 3 in Mendil et al. [2022]. The
opening of Section D.5.1, Section D.5.1.1 and D.5.1.2 are adapted from Section 1 in Mendil
et al. [2022].

D.2.1 Prediction intervals

Let (X,Y) ~ Pxy, with X being the (random) vector of features and Y € R the target in a re-
gression learning task. Let & € (0, 1) be a miscoverage level”, interpretable as the proportion of

Ihttps://wiki.confiance.ai/wiki/Air_Liquide_Demand_Forecasting_UC_Guidelines

Zhttps://proceedings.mlr.press/v179/mendil22a.html

3Mendil, Mossina, Nabhan, and Pasini [2022] is published under license Attribution 4.0 International (CC BY
4.0), which allows to “[...] remix, transform, and build upon the material for any purpose, even commercially.
[..]” (https://creativecommons.org/licenses/by/4.0/). For more information, see the publisher’s license
agreement: http://proceedings.mlr.press/pmlr-license-agreement.pdf.

4The reader can find some papers that accept the edge cases of & = 0 and o = 1, but in our experience this is for
computational convenience. Statistically speaking, since we are working with random variables, setting & = 0 would
correspond to saying “we want zero errors with certainty”, which doesn’t make sense. Anytime the user will be faced
with random event (always), they will have to find a trade-off between the acceptable error rate and the precision (i.e.
size) of their prediction intervals.


https://wiki.confiance.ai/wiki/Air_Liquide_Demand_Forecasting_UC_Guidelines
https://proceedings.mlr.press/v179/mendil22a.html
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predictive mistakes we are willing to accept in the long run, that is, when the predictive system
is in operation. A Prediction Interval (PI) [Hahn and Meeker, 1991] obtained via algorithm
Cq(X) should contain the true value of the random variable Y, (1 — o) 100% of the time. Ideally,
P{Y € Cy(X)| X =x} = (1 — ) holds true conditionally on the value taken by X. An inferential
procedure that satisfies this statement is said to produce conditionally valid intervals’. When the
weaker condition P{Y € Cy(X)} = (1 — o) holds, the procedure is marginally valid, on average
over X.

D.2.2 Construction of prediction intervals

LetY € R be a prediction target, such as the demand of product at any given time in our industrial
use case. There are two main approaches to build the interval Cy (X ) = [Y£,YY], with lower
bound Y~ and upper bound YU. First, one can add an error margin 8, to a point prediction:
Co(X) =[f(X) = 84(X), F(X)+ 84(X)]. Here, f(-) usually estimates the conditional expected
value E{Y |X = x}, and 0¢(X) > 0 depends on the data and a probabilistic statement made
within the PI procedure; in linear regression, for instance, we could assume the errors to be
normally distributed [Wasserman, 2004]. Second, one can estimate the bounds directly, e.g. by
quantile regression: Co(X) = (@04, (X) 5 @1 -0, (X)], where gg(-) is an estimation [Koenker and
Bassett Jr, 1978, Meinshausen, 2006] of the conditional quantile:

gp(x) =inf{y: F(y[X =x) > B} (D.1)

with oy, + oy; = «. If valid, these intervals are representative of the predictive error due to
the predictor (epistemic uncertainty) and the randomness in sampling (aleatoric uncertainty).
Independently of the choice of f(-) or g(-), in Section D.3 we show that conformal inference
builds valid intervals for any method and can “robustify” existing PIs with rigorous probability
guarantees.

D.2.3 Maetrics for prediction intervals

In the literature [Pang et al., 2018, Bazionis and Georgilakis, 2021], we find coverage metrics
to assess how often the predicted intervals Cu (X) contain the true value of Y, and sharpness
metrics to measure the widrh of the intervals. Coverage and sharpness are connected, as a
degradation in one usually leads to an improvement of the other. Let n be the number of samples
in a test dataset D,y = {(X;,Y;)}" . (Xi,Yi) ~ Pxy. For a miscoverage level a € (0,1), we get
the corresponding nominal (target) coverage as 1 — a. We measure how many times the PI
contains the true value via the empirical coverage, or Prediction Interval Coverage Probability:

| LN -
PICP=- Y 1{¥/ <Y, <Y/} €0,1]. (D.2)
i3

5This guarantee is on the procedure followed to sample the data and construct the PIs. The interval has a
probabilistic interpretation only before observing the data. For a detailed explanation, see [Shafer and Vovk, 2008,
Section 2.2] and [Hahn and Meeker, 1991, Section 2.3.6].
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When PICP = 1 — «, the PIs are capturing, or “covering”, the values of Y at the specified rate
o. For a PICP > 1 — o we have overcoverage and we are capturing too many points, for
PICP < 1 — a, we have undercoverage.

In CP, the reference metric for sharpness is the Average Width:

n

1 ~ ~
AW =} (V7 =Y. (D.3)
i=1

The Prediction Interval Normalized Average Width allows for comparisons over different
datasets, via the normalization R = Y,,,;x — Yiuin:
1

nK 3

PINAW = ¥V —Yh). (D.4)

D=

D.3. Algorithms for Conformal Prediction®

Many popular ML algorithms do not offer Uncertainty Quantification (UQ) out of the box
[Hastie et al., 2009, Goodfellow et al., 2016], and some UQ methods are valid only under hy-
potheses on Pyy or asymptotic properties of the algorithm (e.g. Section D.2.1): they require
enough data to get reliable PIs and can suffer from overfitting.

CP [Vovk et al., 2005] is a set of distribution-free, model-agnostic and non-asymptotic meth-
ods to do UQ by constructing valid prediction sets or intervals, whose probability coverage is
backed by theoretical guarantees. Given a miscoverage probability o € (0, 1), a set of exchange-
able’ calibration® data {(X;,¥;)}_, and test point (Xyew, Yyew) With common distribution Pxy, a
CP procedure Cy (-) builds prediction sets so that:

P{Ynew € Cot (Xew) } >1—a. D.5)

Over many calibration and test sets, Co (X ) will contain the observed values of Y with frequency
of at least 100(1 — o) %. Within the CP framework, Equation D.5 holds for any model, any data
distribution Pxy and any finite sample sizes. Unlike the probability statement in Section D.2,
this holds for ¥ when averaging over all possible X, that is, marginally and not conditionally
[Foygel Barber et al., 2020]. We could overcover or undercover Y for some values of X.

CP can act as a complementary tool to attain rigorous probability coverages, as it can
“conformalize” any existing predictor during or after training (black box predictors), yielding
marginally valid PIs even under model misspecification [Chernozhukov et al., 2021]. Further-
more, any theoretical property of the underlying predictor still holds’.

5The incipit of Section D.3 and Section D.3.1 are adapted from Section 3 in Mendil et al. [2022]

TThis includes independent and identically distributed data (iid) as a special case [Aldous, 1985].

8In the original version of CP, also known as Full Conformal Prediction [Saunders et al., 1999, Vovk et al.,
2005], the prediction problem is framed as online transductive inference, where the exchangeability is between the
past observations and the test point X, . This version is not computationally viable, throughout the text we will
introduce versions on CP that rely on holdout “calibration” data, to “conformalize” our predictor.

9¢.g., the asymptotic conditional coverage of Quantile Regression Forests [Meinshausen, 2006].
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D.3.1 Related Work

In this section, we present the most common CP methods of the literature. The reader is also
referred to Angelopoulos and Bates [2021] for a hands-on introduction to CP and Shafer and
Vovk [2008], Zeni et al. [2020] for an in-depth overview. Let D;ain = {(Xi, ¥;)}774" ~ Pxy be
the training data and a € (0, 1) the miscoverage probability.

D.3.1.1 The split conformal prediction procedure

Following the Split CP method [Papadopoulos et al., 2002, Lei et al., 2018], also known as
Inductive CP, here are the fundamental steps of conformalization:

(Step 1) Choose (or receive) a base prediction model: f(-)

~

(Step 2) Choose a nonconformity score: R = s(f(X),Y)

(Step 3) Choose a data scheme: split training data D;,,;, into two partitions, a fir subset D ;;
and a calibration subset D . jipration

~

(Step 4) Fit: compute f(-) on Dy;
(Step 5) Calibrate: compute scores R = {R;}, i =1,..., |Deativration| o0 Deaivration

(Step 6) Get error margin 5 = (I—a)(1+ ﬁ)-th empirical quantile of R

calibration ‘

(Step 7) Inference: build CP interval C (Xew), for observation X,

The base prediction model f(-) (Step 1) is either a pre-fitted black-box f, or is selected
through empirical experimentation or for operational needs. The selection of nonconformity
score (Step 2) is at the heart of CP: here, the default score is the absolute deviation R; = |¥; —
f(X,-)| (Section D.3.1.2 for other possible scores). The split data scheme (Step 3) used to fit
and conformalize a predictor works well with large datasets. We partition D;,;;, in two disjoint
sets: Dy, to fit the predictor (Step 4), and Degjiprarion for calibration. For smaller datasets, better
options exist (Section D.3.1.2). For calibration (Step 5), the data scheme determines the out-of-
sample evaluation of f here, we compute the scores R = {R,-}‘il:)‘f’””"”"’”| on D yjibration- In (Step
6), we compute the error margin 5(5 as a quantile of the sorted scores; 55 is a constant and does
not depend on the test point X,,.,,. At inference (Step 7), we get the PI as:

~

Coc (Xnew) = ]/C\(Xnew) - 5({, ]/C\(Xnew) + 6(]): . (D6)

When conformalizing a pre-trained predictor f, one only needs additional data D.yjipration ~ Pxv,
skipping Step 3 and the fit in Step 4.

D.3.1.2 Conformal regression methods

In the CP literature, different methods stem from the choice of nonconformity score and data
scheme. Split CP turns into Locally Adaptive Conformal Prediction (LACP) when using scaled
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scores R; = W where 6(X) is a predictor of dispersion learned on Dy,. This was pro-
posed by Papadopoulos et al. [2002] and further studied by Papadopoulos et al. [2011], Pa-
padopoulos and Haralambous [2011], Johansson et al. [2014], Bostrom et al. [2017], for dif-

ferent types of predictors. Here, we follow Lei et al. [2018] and & (X;) predicts the conditional

o~

Mean Absolute Deviation (MAD) of (Y . f(x)), conditioned on X = x. LACP is “local” in the

sense that, for a point (X;,Y;) ~ Pxy, the prediction interval size will be corrected to represent
the variability at ¥;|X; = x;. The Pl is given by:

CoXnen) = [ F X)) = & () 547, F Xoe) + 6 (Yo 547 . (D.7)

where the normalized error margin 82°° is scaled up by 0 (Xew)-
Split CP can be extended to quantile (and interval) base predictors ¢(-) via the nonconformity
score:

Ri = max{ﬁalo (Xl) —Y,Yi— &\1—06;,,- (Xi)}7 i=1,..., ‘Dcalibmtion" (D.8)

This gives the Conformalized Quantile Regression (CQR) method [Romano et al., 2019],
with PI:

~

Ca (Xnew> - Z]\ocl,, (Xnew) - 5:)15 ) 2il—och,- (Xnew> + 63 ) (D-9)

where 8¢ is a correction margin that guarantees finite-sample coverage for the quantile predic-
tions. If 8 ~ 0, we get a confirmation of its predictive marginal validity backed by theory.

For small datasets, the jackknife+4 [Barber et al., 2021] uses either a Leave-One-Out (LOO)
or K—fold data schemes for better statistical efficiency, at the cost of fitting n;,4;, and K models.
When the base predictor is an ensemble learner using bagging [Breiman, 1996a], one can com-
pute the nonconformity scores via the Out-of-Bag (OOB) “trick” [Breiman, 1996b] with negligi-
ble computational overhead'”. Notably, the Jackknife-+—after-Bootstrap [Kim et al., 2020] and
the Quantile Out—of-Bag [Gupta et al., 2019] CP methods are, respectively, compatible with any
point f(-) and interval ¢(-) predictor. For the above methods, the inference (Step 7) is modified
to account for the multiple fitted predictors.

D.3.1.3 Conformal prediction for time series

As previously mentioned in the introduction, some recent publications have proposed extensions
of CP to non-exchangeable data [Barber et al., 2022, Tibshirani et al., 2019, Xu and Xie, 2021].
For time series in particular, there are additional assumptions on the prediction problem to get
close to the properties of CP. The method in [Chernozhukov et al., 2018] aims at recovering data
exchangeability via permutations of sequences of data samples. Furthermore, Gibbs and Candes
[2021] and Zaffran et al. [2022] worked on obtaining adaptive miscoverage probabilities o for
online CP, while in [Stankeviciute et al., 2021] CP is applied to multiple time series assumed to

10When bagging, one fits B predictors on B bootstrap datasets S, sampled with replacement from D;4i,. Follow-
ing a probabilistic fact (see citations), on average, about ~ 30% of the samples are left out of Sy, or out-of-bag, and
we can compute the scores with out-of-sample data, approximating a Leave-One-Out (LOO) scheme.
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be exchangeable. Finally, Diquigiovanni et al. [2021] worked with multivariate functional time
series applied to demand prediction in the Italian gas market, and in [Wisniewski et al., 2020]
we find a modified, empirically tested, version of split CP applied to financial data.

Among the most promising results is the Ensemble Batch Prediction Intervals (EnbPI) algo-
rithm [Xu and Xie, 2021], a modification of the Jackknife+-after-Bootstrap that also uses OOB
estimation of nonconformity scores (see Footnote 10). By doing so, EnbPI avoids overfitting
without recourse to data-splitting, which improves the computational efficiency. Using the Out-
of-Bag (OOB) trick [Breiman, 1996b], they compute the nonconformity scores and conformalize
an ensemble algorithm with validity on time series data.

By construction, EnbPI yields constant-size intervals. We proposed [Mendil et al., 2022]
and implemented a locally adaptive extension referred to as Adaptive Ensemble batch Prediction
Intervals (aEnbPl), adding an ensemble estimation of the conditional Mean Absolute Deviation
(MAD) 6 to the original algorithm. These OOB MAD estimators are obtained by aggregation
of bootstrap models fitted on training data. In addition, the absolute residuals are replaced by
a scaled version that serves to build adaptive PIs during inference. This is a straightforward
application of LACP to EnbPI, yielding scaled nonconformity scores.

D.4. Recent developments in conformal prediction for sequential
data

Stemming from the first results reviewed in 2021 and mentioned in Section D.3.1.3, this sec-
tion extends the topic of CP for time series with some of the latest (as of late 2022) and most
noteworthy papers published on CP for time series. Our experiments are restricted to the most
promising for our UC.

D.4.1 Online sequential split conformal prediction (OSSCP)

The Online Sequential Split Conformal Prediction (OSSCP) algorithm, first introduced by Wis-
niewski et al. [2020] and later named, studied and used as baseline by Zaffran et al. [2022], is
a straightforward extension of Split CP (see Section D.3.1.1) to an online prediction setting. At
each time step, using a rolling time window, they split the training data into fit and calibration
partitions without randomization: the proper training data precedes the calibration data. A de-
piction of this scheme is found in Figure D.2. The underlying idea is that using more recent
samples as calibration can account for local changes, closer to the test point, while using a con-
tiguous sequence of data for training can help building models which are more aware of patterns
in the time series. Furthermore, using a sequence of samples instead of a random sample allows
to also fit algorithms for time series such as ARIMA.

OSSCP can be used as a baseline to compare against specialized algorithms ACI, AgACI
(see Section D.4.3) or Non-Exchangeable Split Conformal Prediction (NESCP) (Section D.4.5).
Since time series data break the hypothesis of exchangeability, they lack the theoretical guar-
antees of CP. However, the method appears to perform reasonably well in practice. Further-
more, it can be shown that the fundamental theorem of CP, which relies on the exchangeabil-

ity of calibration and test points {(X;,Y;) ;7:11, can be rewritten to rely only the exchangeabil-
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ity of prediction errors (or generally nonconformity scores); for instance, take as the starting
point the formulation given by Romano et al. [2019]. While time series data have by definition
time-dependent pattern, this does not necessarily imply that the sequences of prediction errors
{& ?’j,OT ,& = Y1 — Y1, have such patterns. The residuals of a correctly specified model for an
ARIMA process are assumed to be i.i.d., for instance. While this observation does not solve
the problem of exchangeability, it can shed light on why they can work well in some cases. A
similar observation is made in the paper of EnbPI [Xu and Xie, 2021].

D.4.2 Ensemble Batch Prediction Intervals (EnbPI) and its variations

The EnbPI algorithm [Xu and Xie, 2021] (see Section D.3.1.3), already included in the report
of batch 1 [Nabhan et al., 2022], has been modified and updated by the original authors and
uploaded to arXiv in an extended format in Xu and Xie [2022].

Recall that the original EnbPI trains an ensemble of B predictors on B bootstrap samples'' of
the original training data, and does bootstrap aggregation [Breiman, 1996a] at inference. Follow-
ing a simple probabilistic argument, having B £ 30 should ensure that each sample is omitted at
least in one of the bootstrap samples. Conformalization requires that the nonconformity scores
are computed on holdout data, and this is possible thanks to the OOB trick [Breiman, 1996b]:
let fib, (x), t =1,...,T, be the predictor that is the aggregation (via the function ¢(-)) of all
predictors which did not use the ¢-th sample in their training; then, the EnbPI (version 1) scores
are computed as €7 = |y, — %, (x,)].

For the inference, let ff(T +])(XT+1) = (1 — a)-th quantile of { f?,'(XTJrl) T, be the point
prediction for the unobserved Y7, . Then, the prediction interval is simply:

Ca(Xrs1) = f? 7.1 (Xr41) + (1 — @)-th quantile of {&'}],

Furthermore, they add a mechanism to update the residuals (hence the conformalizing quan-
tile) to account to shifts in the distributions of the data, without needing to refit the predictors.

D.4.2.1 Ensemble Batch Prediction Intervals, version 2

Under a series of assumptions on the error process (errors being “well-behaved”, their distribu-
tion being well approximated, and others), the authors show they can predict a valid and opti-
mally short prediction interval, conditionally on X; = x;. In practice, from our experience, these
special assumptions are rather hard to be met, and their theoretical guarantees must be taken
with care. For instance, being able to achieve conditional coverage when the prediction errors
are i.i.d. is not a ground-breaking result. In this case, the empirical CDF F, of {&}; will accu-
rately estimate the true F; and return the ,-th and (1 — a;)-th quantiles that assure coverage at
the (1 — ) level.

As for the technical modifications, version 2 of EnbPI now uses the raw prediction errors as
nonconformity scores (no absolute value):

& =y — £ (%) (D.10)

They do not take into account the ordering of the data when bootstrapping, uniformly at random, the samples.
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They attain an optimally shortest interval, going through the estimation of a 3 parameter
that shifts “to the right” or “to the left” the estimation of the empirical quantiles. This is possible
because the scores in Equation D.10 keep their sign, unlike what is commonly done in CP (e.g.
absolute deviation), which entails a loss of information on any asymmetry in the distribution of
the prediction errors.

~

Co(Xr41) = [l]zo(ﬁ),%(g)]

= [ff.1(Xr11) + (B) quantile of {&7}]_, (D.11)
1 (Xr40) + (1 — o+ B) quantile of {87}], (D.12)

where: R
B = argmingg o] [gri(B) — qio(B)]  (size of interval). (D.13)

Remark: for § = 0, the authors follow the convention of taking the 0-th empirical quantile of
{817, to be min({&’}_)).

D.4.2.2 Ensemble Conformalized Quantile Regression (EnCQR)

Finally, we mention the work of Jensen et al. [2022], who merged the EnbPI algorithm with
the Conformalized Quantile Regression of Romano et al. [2019]. Their algorithm, Ensemble
Conformalized Quantile Regression (EnCQR), is a straightforward extension of EnbPI, useful
when the variability of Y |X is known or suspected to be not constant. They do not provide
specific theoretical guarantee for their variant algorithm, although in practice we can expect it
to work reasonably well given that both CQR and EnbPI seem to perform well in a variety of
scenarios.

D.4.3 Adaptive Conformal Inference (ACI) and its variations

In this section we present the contents of the papers by Gibbs and Candes [2021], Gibbs and
Candes [2022], originally framed for generic online prediction and Zaffran et al. [2022], focused
on time series and their interactions with adaptive miscoverage rates. Furthermore, we can find
some performance gains, for a reasonable additional computational cost, in the Fully Adaptive
Conformal Inference (FACI) algorithm of Gibbs and Candes [2022], which includes the Online
Expert Aggregation on ACI (AgAC]) of Zaffran et al. [2022] as a special case.

D.4.3.1 Adaptive conformal inference

The Adaptive Conformal Inference (ACI) [Gibbs and Candes, 2021] algorithm requires the base-
line conformal predictor to be parameterized by an adaptive miscoverage rate ¢, € (0, 1), which
can change at each time step and hence “adapt” to distribution shifts of the data. Setting &} = &
and Y > 0, for ¢ > 1 the update is defined as:

Q1 = 0 +y (0 —erry), (D.14)
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where o € (0,1) is the target miscoverage probability set by the user, o; and err, = 1{Y; ¢
ax, (X;)} are respectively the adaptive miscoverage rate and the empirical error of iteration z.
The parameter y > 0 determines how “reactive” the algorithm is, when updating oy, after
correct (err; = 0) and erroneous (err, = 1) predictions. In their experiments, Gibbs and Candes
set ¥ = 0.005, as it was found to be empirically satisfactory. The authors also experiment with
the following weighted variation:

t
Qi1 =0+ (a -y wserrs> (D.15)
s=1

where {w;}1<s</,wy € [0,1], is a sequence of increasing weights such that Y’ wy = 1. They
find that they yield “almost identical results” although the sequences of {Ot,}tT:” stemming from
Equation D.15 are smoother.

D.4.3.2 Online Expert Aggregation on ACI (AgACI)

The paper by Zaffran et al. [2022] studies the behaviour of ACI by Gibbs and Candes [2021] on
time series data. They also introduce and test their own version of the algorithm, Online Expert
Aggregation on ACI (AgACI), which works by carrying out K updates in parallel, yielding a
set {octk}kK:1 adaptive miscoverage rates at each ¢-th iteration, and aggregating their predictions.
Casting the problem as one of online learning [Cesa-Bianchi and Lugosi, 2006, Hazan et al.,
2016], each update is guided by a different value ¥, referred to as “expert’ in the literature,
and the resulting predictions {C¥(X;) = [1F,uf | }K_| are aggregated using the Bernstein online
aggregation of Wintenberger [2017].

They show how different values of y have a direct influence over the empirical coverage
of the algorithm. Among other things, they simulate data ¥; = f(X;) + &, with noise from an
(autoregressive moving average) ARMA(1,1) process of parameters ¢ and 8, that is, &4 =
o0& + &1+ 0&, where & is a white noise known as innovation in the time series literature.
They give an empirical example of how CP methods, applied to non-exchangeable data, can
attain good coverage, ~ (1 — o) 100%, for values of 6 = ¢ < 0.9.

On a practical standpoint, this new empirical study and the previous results from the lit-
erature [Wisniewski et al., 2020, Mendil et al., 2022], strengthen our belief that CP is a good
starting point also when applied to non-exchangeable data. Of course, in this later case, one can
easily improve the performance of CP using the special algorithms introduced in this chapter.

D.4.3.3 Fully Adaptive Conformal Inference (FACI)

The Fully Adaptive Conformal Inference (FACI) algorithm [Gibbs and Candes, 2022], which
includes AgACI [Zaffran et al., 2022] as a special case, requires a pool of ¥ candidate values ¥,
k=1,...,K. The idea is to carry on K updates in parallel, at each iteration, choosing the 7; that
yields the best prediction according to some criterion. FACI is not computationally prohibitive
if the baseline method (e.g. Split CP) can produce K prediction intervals, one for each 7, with
negligible computational overhead.
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With abuse of notation, we denote with C;(f3) a prediction set built using the probability of
order 1 — f3 to compute the empirical quantile (see Section D.3.1.1); unlike with proper Split CP
(see Step 6 of Section D.3.1.1) and derived methods, FACI requires no adjustment in the empir-
ical quantile formula because its validity relies on a different mathematical argument (notably,
FACI is not valid in finite samples).

For the sake of this, let us take a regression example. An acceptable nonconformity score
could be: S;(X;,y; (X;,Yi)'=1) = [y — fi(X,)|. Here,(X;,Y;)!=! is the recorded data up to time
t — 1, used to train or update the base predictor ]/‘; The RCI prediction interval is then defined
implicitly as:

1 t
G(B) = {y:S,nguantile(l—B,t255,’}')}. (D.16)
i=1
Also, let us define the following quantile loss, also known as pinball loss:
(B, 0) = a(f— 6) —min{0, 5 — 6}, (D.17)
where
B :=sup{B:Y, € G(B)} (D.18)

Along the lines of the argument of the authors (convexity of loss function ¢), we have that
the following update formula is equivalent to Equation D.14:

o =041 —yVel(B,0) (D.19)

We set a value o for each %,k = 1,..., K, which is updated online following Equation D.19.
At inference, the value o; to be used for to build the prediction interval is selected according to
the historical performance of the values {y}, (we leave the details to the original paper [Gibbs
and Candes, 2022]).

D.4.3.4 Rolling conformal inference

Similarly to the ACI methods (Section D.4.3), Feldman et al. [2022] propose a new method for
online prediction, called Rolling Conformal Inference (RCI), which aims at being adaptive with
respect to possible (time-varying) shifts in the Pyy distribution of the data. Unlike with ACI,
instead of updating a parameter that influences the size of the prediction intervals, the interval
size is directly parameterized by a calibration parameter 6;. The idea is that larger (respectively
smaller) values of 6 will yield larger (respectively smaller) prediction sets, thus forcing the
intervals to cover, on the long term, the true values of ¥ with a nominal level 1 — .

This is framed as an online prediction task, hence for each time step ¢t we assume the follow-
ing phases: first, the test feature vector X; is revealed, then we build a prediction interval around
the predicted Y,, then the true observation Y, is revealed and finally we update the parameter 6;
and the predictor f(-) with this new data. The prediction interval at time 7 is determined by:

CRU(X,) = £(X:, 60, r), (D.20)
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where the interval predictor f(-) takes as inputs: the current test feature vector X;, the calibration
parameter 6, and the model (-), predicting the target Y|X, fitted on data points {X;,¥;}/~].
When the true observation Y; is revealed, the calibration parameter is funed according to:

9[+1 = 9,—}-}/(61‘1}—06), (D21)

with y> 0 and err, = 1{Y; ¢ C RC1(X;)}. Remark that this is slightly different from Equation D.14
of ACI, where the update is o — err;.

Finally, we get 11,1 by updating the previous model p; with (X,,Y;). This can be done seam-
lessly, for instance, with online learning models or simply by refitting u,,; on the whole data
sequence {X;, Y,}?Z |- As demonstrated in Theorem 1 of Feldman et al. [2022], their algorithm is
valid in the following sense:

T
lim ;; 1{Y, ¢ Co' (X))} =1 -« (D.22)

Like in conformal inference (Section D.3), this method is distribution-free and model-
agnostic: the underlying distribution need not be known, nor we need assumptions on fi(-).
However, the coverage is guaranteed only asymptotically.

As to the actual construction of the conformal prediction interval using 6, the authors
propose multiple solutions. For the case of quantile regression, let u(X;, 5) and u(X;,1— %) be
lower and upper quantile predictors (quantile regression). The RCI interval is then:

£ 81 b) = [, 5) = 0(6), (X1 = 5) +6(8)] (D.23)

This interval predictor looks very similar to what prescribed by CQR [Romano et al., 2019,
see Equation D.9], except that instead of computing the quantile 8 of a set of holdout residuals
(nonconformity scores), we use an arbitrary stretching function ¢(6;). A trivial example could
be ¢(0) = 6: since 6 is not bounded, it could directly represent the adjustment (error margin).
However, given the formula in Equation D.21, the update could happen too slowly. A better
alternative is to use the exponential stretching:

e —1 0>0
0) = ’ D.24
6(6) {_69_1’ o0 D.24)

With this function, for 6 = 0, the calibration would be moderate while for bigger values the
inflation of the prediction interval would grow exponentially. Intuitively, if the PIs can grow
rapidly, we start capturing a good fraction of true values “sooner” and the adjustment can have
effect in fewer iterations. The authors also adapt this method to tasks other than regression, such
as classification and multi-output regression.

D.4.4 Conformal Prediction Under Covariate Shift

The work of Tibshirani et al. [2019] is an extension of the conformal prediction in case of non-
exchangeable data. More specifically, it leverages the concept of "weighted exchangeability" to
handle covariate shift.
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According to Storkey [2009], covariate shift occurs when the data is generated according to
a model P(Y/X)P(X) and where the distribution P(X) changes between training and test sce-
narios.

Train data: (X;,Y;)) ~P =Py xPy)x, i=1,...,n

Test data: ()(,1+1,Yn+1) ~ ﬁ: ﬁX X PY/X

Notice that the conditional distribution of ¥ /X is assumed to be the same for both the training
and test data (there is no concept shift).

D.4.4.1 Weighted Split Conformal

In the assumption of covariate shift, the calibration and test dataset are no longer exchangeable.
The procedure of conformal prediction remains similar except that the nonconformity scores are
weighted by a probability proportional to the density ratio:

w(X;) = Srest(Xi) (D.25)

N fcalib (Xl) ’

where fiest and f.aip are the marginal probability density functions of X under the test and cali-
bration distributions, respectively.

Given a calibration set Zqip = {(X;,Yi) }i=1,... » and a test point (X, 1,Y,1), the weighted
residuals distribution is as follows:

frR= ZWi “OR, + Wiy 0o, (D.26)
i—1

1

where R; = |Y; — 1(X;)| for the pre-trained model [,

. w(X;)

W = W(Xn+l)
l W(Xl)++W(Xn)+W(Xn+l)

5 and "T/n+1 =

Therefore, the interval prediction for the new point (X, +1,Y,+1) is:

—
o~

Cn(Xn+1) = [.u(Xn+l) - Qlftx(

(agE

Wi OR, + Wnt1 - O4e0),

Il
—

i

(D.27)

M=

H(Xnr1) +Q1-a( Y Wi+ Or, +Wnt1 - 81e0)],

=1

where that Qj_¢(.) is the (1 — )th empirical quantile.
In this setup, data are "weighted exchangeable" and the conformal prediction has a valid
coverage.
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D.4.4.2 Weighted exchangeability

Definition [Tibshirani et al. 2019]: Random variables Vi, ...,V, are said to be weighted ex-
changeable with weights functions wy, ..., w, if their joint probability density function f can be
factorized as

f(Vla-”vVn) :Hwi(vi)'g(vla"'vvn)u
i=1

where g is any function that does not depend on the ordering of its inputs, i.e., g(Vg(1);- - - Vo(n))
=g(v1,...,v,) for any permutation ¢ of 1,...,n.

Lemma [Tibshirani et al., 2019]: Let Z;, ~ P, i = 1,...,n be independent draws, where
each P>, is absolutely continuous with respect to P;. Then Z,,...,Z, are weighted exchange-
able, with weight functions wy : x — 1 and w; = dP;/dP, fori > 2.

In the special case of the weighted split conformal, data are weighted exchangeable by con-
struction of the weights in Equation (D.25). From Lemma 3 in Tibshirani et al. [2019], we
conclude that

P{Rus1 < Q1_a(Ry)} > 1-a. (D.28)

As a consequence, the prediction interval of the weighted split conformal is marginally valid.

D.4.4.3 Weight Estimation

In case we do not know the true probability density functions fis and feaip, We want to estimate
their ratio from the available data. There are several methods to approach the density ratio esti-
mation; Tibshirani et al. chose the probabilistic classification method.

Let Xi,...,X, be the samples in Z 4, and X, y1,...,X,+m be the samples in Z5. We
consider the binary classification problem on (X;,C;) where X; € 2 = Dgjip U Dyesr and:

0 ifX; € D.ui
C = { ! tib (D.29)

1 if Xl c .@[es[

We note p(x) the estimate of IP(C = 1|X = x) obtained by fitting a classifier to the data
{(Xi,Ci)}i=1,....nt-m- We have:
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Jrest(%)
wlx) = Sfealib(x)
P =xlC=1)
P(X =x|C=0)
CP(C=1[X =x)-P(X = x) P(C =0) (D.30)
N P(C=1) "P(C=0]X =x)-P(X =x)
CP(C=0) PC=1X=x) P(C=0) p)
TPC=1) PC=0X=x) PC=1) 1-pk)

Since the weights are normalized (see Equation D.26), it is sufficient to approximate the
density ratio w proportionally to a constant. Therefore, the density ratio w is:

() (D.31)

T 1=k
D.4.5 Non-exchangeable Conformal Prediction

The work of Barber et al. [2022] proposes an extension of the split conformal, full conformal
and jackknife+ methods in case the data points are non-exchangeable. Specifically, the potential
coverage gap due to this non-exhangeability is explicitly upper-bounded with respect to the
total variation distance between the in-sample and out-of-sample data distributions and weights
w expressing the likelihood of the data to come from the same distribution.

For non-exchangeable conformal methods, Barber et al. introduce weights wy,...,w, €
[0, 1] with the intuition that a higher weight w; should be assigned to a data point Z; = (X;,Y;)
that is "trusted", i.e., that is believed to come from (nearly) the same distribution as the test point
Z,+1- The weights w; are assumed to be fixed (contrarily to Tibshirani et al. [2019] that construct
weights from the data).

Particularly, the split conformal is modified to use weighted quantiles, with weights given by
the w; rather than the orginal difinitions where all data points are implicitly given equal weights.
The prediction interval is given by:

(/j;(Xn—H) =

U(Xnt1) £ 01-a (Z WiOR, + W1 '5+oo>] s (D.32)

i=1
where R; = |Y; — 1(X;)| for the pre-trained model [ and
i =1 and W !
= ,i=1,....n Wpe1 = .
Wit w+ 1 w1

Let Z= (Zy,...,Z,+1) denote the full data set, where Z; = (X;,Y;) composed of n calibration
points (Zi,...,Z,) and one test point Z,, 1. Let Z' = (Z1,Z; 1, Zn+1,Zi+1,Zn,Z;) denote the same
data set after swapping the test point Z, ;| with the i-th calibration point Z; (i = 1,...,n).

wi

(D.33)


https://en.wikipedia.org/wiki/Total_variation_distance_of_probability_measures
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Theorem [Barber et al. 2022]: Let i be any pre-fitted model. The non-exchangeable split
conformal method defined in (D.32) satisfies:

P(Y,11 € Ca(Xar1)) > 1—a— Y w;-dry(R(Z),R(Z')), (D.34)
i=1

Coverage Gap

where R(Z) € R"™"! (resp. R(Z') € R™"!) is the residual vector built from the inferences
with [l on Z (resp. Z').

The authors explain the intuition for choosing the weights w;: higher weights should be
associated with calibration data points (X;,Y;) that are likely to be drawn from a "similar" distri-
bution as the test point (X,+1,Y,+1). Conversely, lower weights are assigned to data points that
are less reliable. The theorem (D.34) suggests that the coverage gap can be decreased by pick-
ing small weights w;. However, this comes with a downside: the smaller the weights, the larger
the prediction intervals are. In the extreme case where wi = wy, = --- = w, = 0, the coverage
gap is zero but the prediction interval covers all real values 6a (X,+1) = R, which is completely
uninformative.

Empirically, for time series, we recommend simple choices such as weights that decay ex-
ponentially over time:

i
Wi = Pn+ l?

such that n is the size of calibration dataset, i is a time index and p € (0, 1) is the decay parameter.
Notice the weights associated to more recent samples are larger: i1 > i, = w;, > wj,.

D.5. Experiments

D.5.1 Use Case: Air Liquide Demand Forecasting'?.

We tackle a use case of industrial gas demand forecasting. An anonymized dataset was built by
Air Liquide, a world leader in gases, technologies and services for industry, to be representative
of the industrial process. In the case of this work, it takes part in the overall characterization
of the Al algorithm, by tackling the uncertainty associated with an Al algorithm, and finding
well-defined metrics and quantification approaches with high guarantee.

D.5.1.1 The Industrial Use Case

With several sources of production and multiple customers of industrial gases across France, it
is the company’s responsibility to guarantee the availability of supply, i.e. it should know when
to deliver the right product to all its customers on time.

12The opening of Section D.5.1, Section D.5.1.1 and D.5.1.2 are (lightly edited) versions of Section 1 in Mendil
et al. [2022]
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By taking into account geographical and logistical factors, managing the customers’ prod-
ucts storage has an effect on the whole supply chain, from production to distribution. Therefore,
the dispatchers, who are in charge of delivering the products, estimate the future trends of cus-
tomers demands in advance based on their years of experience in the field. They have to take into
account daily logistical constraints, e.g., limited transport resources, limited product availability,
and accessibility issues.

In order to help the dispatchers in their estimations, multiple forecasting algorithms have
been proposed to predict the needs in production as precisely as possible in the short term, and
compare them with the dispatchers’ estimations. Nonetheless, despite achieving remarkable
performance, the comparison between the predictions and the estimations yields an uncertainty
that is currently not measured. Such uncertainty can have a critical impact on production: if we
produce more than intended, we face energy and product losses; conversely, if we produce less,
we risk drying out the customers and failing to deliver the right amounts on time.

D.5.1.2 Challenges and Objectives

In light of this industrial context, even the best forecast model can suffer from uncertainty be-
tween the forecast predictions and the dispatchers estimations. The focus is then shifted toward
quantifying the uncertainty associated with the forecast predictions. Since this forecasting use
case is a regression problem, one effective way would be by building prediction intervals via Un-
certainty Quantification (UQ), which consist of upper and lower bounds that contain the forecast
predictions with high probability. Hence, the dispatchers would have at their disposal minimum
and maximum values that numerically quantify operational uncertainties.

Nonetheless, operational constraints have been expressed regarding the desired results. Ob-
viously, these intervals should have a high coverage probability to be used in production with
great trust, while also being as “narrow” as possible to be informative for the dispatchers. To
approximate more effectively their predictions, dispatchers need a sort of statistical safety net
in their decision-making process, that will increase the robustness of these operations, boost the
trust in the forecast algorithm, and optimize the production and distribution of the products.

D.5.1.3 Structure of the regression problem and choice of validity

The dataset of our UC was built aggregating 29 time series (referred to as “subseries” in the
text), recorded weekly; at any time step we have 29 entries. To help comprehension of later
sections, here is a simplified version of the dataset as provided by Air Liquide. Lets =1,...,T
be the time index, C = {cy,c2,...,c29} be a categorical variable encoding the subseries and Xy
one of the features.

We work with the UC data as structured in the simplified Table D.1, although this could be
re-written as in Table D.2, typically found in multi-output regression problems. This difference
hints at a challenge behind the design of conformalization and assessing coverage: do we need to
have the whole target vector to be covered at the 1 — & level? Or do we rather aim for an average
coverage? That is, we must choose between the guarantee of P{[Y;! | --- Y% ] € Co(Xr41)} >
1 —oa, and P{Y;},| € Coa(Xr11)} > 1 —a, for k € {1,...,29}. The choice depends on the
operational need of the user. A naive solution for the first would be to opt for a an adjustment
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Table D.1: A simplified rendition of our UC’s dataset.

t yer ye .. ye29 le XXZ .. XX”
1Y i yf
C
2 YQI Y2 y29
T % )

Table D.2: Example of multi-output dataset structure applied to our UC.

of the miscoverage rate d la Bonferroni: & = £, where K is the dimension of the target vector.

This entails selecting a “more extreme” conformalizing quantile (see Step 6 in Section D.3.1.1)
resulting in the inflation of the size of the prediction intervals (or rather prediction regions, in this
multi-dimensional case). The reader can find an application of this in de Grancey et al. [2022],
for the conformalization of object detection: for their UC (pedestrian detection), it is critical
that the bounding box covers the entire object at the nominal coverage level 1 — ¢. This can be
attained, for instance, by controlling each one of the four sides of the bounding box, yielding
a="2

The previous solution is not the only way to approach this multidimensional problem. An
alternative could be to formalize our problem following the definitions of coverage found in
the recent paper by Lin et al. [2022]: the authors propose a notion a longitudinal validity and
cross-sectional validity when working with multiple time series at once.

In Figure D.1, we see a simplified depiction of the two coverages: each series corresponds
to a patient being followed up in a longitudinal study, the purpose is to be right 100 (1 — &) % of
the time, for 100 (1 — )% of the patients, at any time. As stated above, this choice is arbitrary
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Figure D.1: Cross-sectional coverage is on the vertical axis, longitudinal is on the horizontal
axis. Adapted from Figure 1 in Lin et al. [2022] (published under license: CC BY 4.0).

and depends on the user’s needs.

This type of coverage is, informally, what we aimed for in Section D.6.2. Along the lines
of Lin et al. [2022], we would want to observe that for each subseries the nominal coverage
1 — « is attained. There, we train our predictor on the data formatted as in Table D.1 and
conformalize the series separately, computing 29 sets of nonconformity scores by conditioning
as: ¥,|C = 1,Y|C =2,....,Y;|C =29, as done also in Romano et al. [2020]. In practice, both
using adaptive methods such as CQR and conditioning the conformalization by the category C
seems to work well.

D.5.2 Updated experiment procedure

Following the scheme introduced in Section D.4.1, we work with OSSCP, an online version of
inductive conformal prediction, depicted in Figure D.2. Initially, N data points are available,
which we split sequentially into a fit subset Z;; = {(X1,Y1),..., (Xk,Yk)} and a calibration sub-
set Deatip = {(Xk+1,Yk+1), -, (Xn,Yn)}. As argued in Zaffran et al. [2022], not randomizing
the samples aims at excluding future observations from Zy; and prevent over-fitting. Other-
wise, such data leakage may lead to an under-estimation of the errors on Z.4;,. For a new
point (Xy.1,Y,.1), the prediction interval is estimated by Co(Xy+1). At time step r = N +2,
Y,+1 is already observed and available to be used in the conformalization process. The newest
point enables to update the fitting and calibration subsets by shifting the time index by one:
gfit = {(XQ,Yz),..., (XK-H,YK-H)} and gcalib = {(XK+2,YK+2), -~-,(){N+17YN+1)}- Then, W€ 1ré-
train/recalibrate the model using the new split and estimate the PI Cy(Xy42) and so on. Note
that we can consider a batch size s > 1 for the update of the underlying regression model and
nonconformity scores after s new observations.

D.5.3 New metrics

Comparatively to the usual metrics presented in Section D.2.3, we need specific adaptations to
assess the robustness of the SoTa methods against changes in the data distribution with time.
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Weeks
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Figure D.2: The sequential split scheme used in the experiments. The sequence of n weeks in
the original dataset is split into m datasets. The number of fit weeks (in green) and calibration
weeks (in purple) can be tuned by the users.

Therefore, in addition to computing the marginal coverage probability (PICP) and the av-
erage PI width (PINAW) over the whole time horizon H, we will evaluate their evolution over
smaller intervals (or windows). This helps us analyze and visualize the impact of data shifts
occurring at certain times on the PI’s validity and efficiency.

Let Diest = {(Xn+1,YN+1);---, Xn+m,Yvim)} be a test set composed of H data points (re-
vealed in a stream fashion). Following the procedure described in Section D.5.2, a PI C’a (X;) =
[V, ¥V] is estimated for each time step # = N+ 1,...,N+T. We consider a constant time
window of size /# and define the moving average of the PICP for time window i as:

1 i+h N .
MA-PICP; = - Y 1yt <v <y’yelo.1]. (D.35)
k=i

Similarly, the moving average PINAW for time window i is defined as follows:

1 i+h N N
MA-PINAW; = — Y (Y —Y}), (D.36)
hR k k
k=i

where R = Y,,ux — Ynin 18 @ normalization factor.

D.6. Results

In Section D.5.1.3 we mentioned the different kinds of validity admissible for our problem. In
what follows, we first report the validity averaging the coverage among the 29 subseries at each
time step, and then study how to attain the valid coverage of 1 — o for each individual case.

We also recall that the empirical coverage reported in this Section is a random variable,
since its value depends on the sampling of the test data. Even for a textbook example built
by simulation, we must expect to have some fluctuations around the nominal coverage level of
1 — . Angelopoulos and Bates [2021] gives a clear example of this in their introduction to CP.
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Method Y Empirical Coverage (G) Average Width (o)
OSSCp NA 0.901 (0.073) 1.017 (0.187)
OSCQR NA 0.896 (0.082) 0.885 (0.457)
NESCP 0.999 0.898 (0.073) 1.003 (0.186)
NESCP 0.990 0.900 (0.075) 1.035 (0.231)
NESCP 0.980 0.926 (0.067) 1.228 (0.318)
NESCP 0.970 0.944 (0.058) 1.429 (0.382)

Table D.3: Experimental data, with nominal coverage of (1 — &) = 0.9: metrics averaged over
300 runs (standard deviation given in parentheses), following the scheme depicted in Figure D.2.
For each run, we took 20 weeks of fit, 5 weeks of calibration and one week of test.

D.6.1 Comparison of methods, averaging coverage in the subseries

In Table D.3 and in Figure D.3, at each inferential step, we average the coverage over the 29
subseries and over the 300 weeks of test data. That is, for each test time ¢ € [1,...,300], we
compute 29 prediction intervals and count how many times we captured the true value of ¥, ¢ =
1,...,29. For instance, if we capture 23 out of 29 values, we say that at time ¢ we have coverage
of about 79%. The values we report are the average coverage (as in the PICP of Equation D.2)
and the average interval size (the average width defined in Equation D.3) over 300 test steps and
over 29 subseries. For instance, saying that the method OSSCP in Table D.3 attained a coverage
of 0.901 means that over the 300 x 29 intervals built, 90.1% contained the true value. The same
can be said for the average width of the intervals.

In Figure D.3 we see that all methods attained the threshold of 90% coverage within a few
decimal points. NESCP using ¥ = 0.98 and y = 0.97 yielded much bigger intervals and higher
coverage: this is a results of the algorithm, which ensures better coverage by being more con-
servative (larger intervals).

The empirical results obtained exceeded our expectations, since OSSCP and OSCQR do
not have any special theoretical guarantee for the case of time series data, just a healthy dose
of common sense. An explanation could be that the prediction errors are well-behaved and do
not exhibit egregious patterns: their behavior could be close to be exchangeable or even i.i.d.,
that is, we could have (unknowingly) that at every inferential step the value of the error does
not depend on what observed or predicted at the previous step. This is an unlikely scenario in
practice, and we suppose that the truth could be somewhere in the middle: within our UC, the
prediction errors turned out to be well-behaved enough to grant us good empirical results. Ca va
sans dire, we cannot expect this to hold in the general case and only an empirical, experimental
assessment of various methods can help the user in choosing the right method.

If we leave the land of averages and enter the details of coverage for each subseries, we get
a slightly different picture: some subseries are overcovered and others are undercovered. For
this reason, we now study the performance of CP when conditioning the conformalization on
the subseries values.
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Figure D.3: Comparison of multiple CP methods. Empirical coverage vs Average width of
prediction intervals, & standard deviation.

D.6.2 Coverage for each subseries in the data

Air Liquide’s dataset is composed of 29 time series, each considered as a category. The previous
nonconformity scores and PIs were computed regardless of these categories. But the idea of
group-conditional CP explored by [Romano et al., 2020] is interesting to fine-tune the calibration
for each of the 29 times series individually. The incentive of such targeted calibration is to reach
marginal validity for each individual time series, which is not theoretically guaranteed when the
conformalization is applied indistinctively (see Table D.4). The regression model is, however,
still trained across all the categories. The reason is there are underlying dependencies between
the time series (confirmed by domain knowledge) that drastically improve the accuracy during
inference. Nothing alarming here as CP is model-agnostic.

The experimental procedure is similar to the one described in D.5.2, the only difference
being the use of 29 calibration datasets instead of one, where .@Zalib is related to time series i and
used to infer the PI through Cj,.

Table D.4 shows the performance of the PIs obtained for each time series’ category with
OSSCP (baseline) and NESCP in terms of marginal coverage and average width. The o is set
to 10%, the target coverage is thereby 90%. Overall, the coverage with OSSCP is nearly valid.
Rows highlighted in red correspond to significant coverage deviations from the target when
OSSCP is used. The deviations are reduced with NESCP in exchange for an increase of PIs’
widths. More specifically, we can track in Figure D.4 the evolution with time of the PI’s validity
and efficiency for four time series highlighted in red. The PI’s coverage and width are averaged
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Category Empirical Marginal Coverage Empirical Average Width
ossce NESCP ossce NESCP
1 0.80 0.88 0.43 0.51
2 0.97 1.00 0.19 0.19
3 0.92 0.94 2.36 2.69
4 0.96 0.96 1.36 1.65
5 0.94 0.96 0.91 1.09
6 0.90 0.96 0.17 0.17
7 0.94 0.94 1.69 2.20
8 0.86 0.96 1.68 2.17
9 0.92 0.94 0.32 0.38
10 0.92 0.96 1.26 1.65
11 0.94 1.00 0.97 1.10
12 0.88 0.94 0.32 0.42
13 0.88 0.90 0.96 1.10
14 0.96 0.98 0.99 1.25
15 0.82 0.86 0.18 0.25
16 0.84 0.90 0.80 1.12
17 0.88 0.94 0.91 1.12
18 0.84 0.88 0.26 0.307
19 0.94 1.00 0.18 0.19
20 0.90 0.92 1.65 1.90
21 0.92 0.92 0.56 0.65
22 0.86 0.92 0.75 0.87
23 0.94 0.96 1.13 1.65
24 0.90 0.94 0.58 0.75
25 0.90 0.90 1.30 1.52
26 0.94 0.96 0.88 1.03
27 0.96 0.96 0.49 0.64
28 0.96 0.98 0.84 0.90
29 0.88 0.90 1.63 1.85

Table D.4: Validy and efficiency comparison between OSSCP and NESCP per time series cate-
gory.

over 10 weeks time windows (as described in Section D.5.3). The moving average coverage
does not necessarily stabilize at the target 90% but moves up and down the dotted black line.
While such behavior is expected (CP does not guarantee conditional coverage), it is intensified
by the non-exchangeability of the data, i.e., the presence of distribution shifts in the time series.
For example in time series 8, we can notice a heavy drop of the sliding average coverage of the
PI with OSSCP to barely reach 63% at a certain time. The distribution shift is better handled
by NESCP thanks to the weighted correction of nonconformity scores; the PI’s moving average
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coverage stays systematically over 82%. The counterpart is the adaptive inflation of the PI width

to cope with the data drift.
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Figure D.4: Moving average coverage and width of PI for some categories with OSSCP and

NESCP.

In many situations, our weighted calibration results in a conservative coverage. In Table
D.4, we can observe that the marginal coverage of NESCP is usually higher than the target 90%

PI Width

PI Width
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and sometimes close to 100%. This is directly linked to the exponential decay weight function
used on the nonconformity scores during calibration. While it seems as a natural choice to give
more "importance" to recent data points when dealing with time series, the way we quantify
this "importance" is relevant for the efficiency of the PI. Domain knowledge could be pertinent
to anticipate the future trends of distribution shifts and therefore avoid larger PIs that can be
somewhat uninformative.

D.7. Conclusion

The subject of CP applied to time series was introduced in 2021. Our previous results are found
in the report of the project EC3, Action Sheet 5, released in 2022, and the paper by Mendil et al.
[2022]. There, we used a cumulative time window to obtain five large datasets: for each dataset,
we fit only one base predictor, conformalize it on a large set of calibration data (covering multiple
months or years) and finally we ran the inferences on a large batch of test data. Unsurprisingly,
the introduction of the OSSCP scheme greatly improves the performances of the methods tested
in 2021. The same algorithms (CQR, etc.) are now refitted and reconformalized after each
inference, which happens at every time step (each week). This simple modification, allows the
model to be always up-to-date with the latest data. Of course, this scheme is less straightforward
to implement for high-frequency data: if we had to run an inference every second, for instance,
then we could need to run multiple inferences (i.e. many seconds or minutes) before being able
to update and reconformalize our predictors.

With our experiments we also showed how the methods built for time series and to handle
distributions shifts (EnbPI, NESCP etc.) can further improve the empirical validity of CP.
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E.1. Introduction

Supervised learning is the machine learning task of learning a complex mapping between input
and output data. Learning this input-output relation enables the possibility to predict a future
output data (yet unknown) based only on the input data. In practice, there is almost always a
gap between a model’s predictions and the actual observed data: we want to characterize this
gap which we call uncertainty. The following section shows how to estimate the prediction
uncertainty in order to design robust and trustworthy machine learning models. This uncertainty
can be decomposed into epistemic and aleatoric uncertainties.
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Epistemic uncertainty comes from a lack of knowledge of the real/physical model that gener-
ated the data. This error can therefore be reduced by accumulating more data and by increasing
the flexibility of the model (the number of parameters for example). These two approaches
roughly correspond to a reduction of the variance and the bias of the Al model. However, the
reduction of this uncertainty cannot replace its measurement and estimation. Bayesian meth-
ods and ensemble methods are currently the most popular approaches for quantifying epistemic
uncertainty.

We suggest to use a Monte Carlo estimation of this uncertainty. It consists in sampling
the parameters of the learning model, a method that remains the gold standard in uncertainty
estimation. We have developed in the following a new alternative for estimating uncertainty
using Bayesian Neural Networks.

Moreover, the predictive uncertainty is not exclusively determined by the bias and variance
introduced by the representation of the AI model. Indeed, if the phenomenon under study in-
cludes a random component, it is impossible to establish an exact deterministic correspondence
between input and output data. In this case, classical supervised models are doomed to provide
an average prediction whose deviation from the observed value will be non-zero.

This aleatoric uncertainty can sometimes be neglected (signal and noise separation approach).
In the case where the stochastic component completely dominates the physical phenomenon, it
is no longer possible to neglect it.

For instance, within the framework of meteorological predictions, models often offer a single
temperature prediction to the user (random component neglected) whereas they offer a percent-
age of precipitation (random component taken into account).

In the next section, we will cover the dedicated tools developed in order to estimate the
prediction uncertainty within the scope of supervised learning. This estimation is performed
by using generative models that allow to approximate the data distribution. With this tool, it is
therefore possible to associate prediction and uncertainty in a regression problem.

Markov Chain Monte Carlo (MCMC) algorithms do not scale well for large datasets leading
to difficulties in Neural Network posterior sampling. In this document, we apply a generalization
of the Metropolis Hastings algorithm that allows us to restrict the evaluation of the likelihood
to small mini-batches in a Bayesian inference context. Since it requires the computation of
a so-called “noise penalty” determined by the variance of the training loss function over the
mini-batches, we refer to this data subsampling strategy as Penalty Bayesian Neural Networks —
PBNN:S. Its implementation on top of MCMC is straightforward, as the variance of the loss func-
tion merely reduces the acceptance probability. Comparing to other samplers, we empirically
show that PBNN achieves good predictive performance for a given mini-batch size. Varying
the size of the mini-batches enables a natural calibration of the predictive distribution and pro-
vides an inbuilt protection against overfitting. We expect PBNN to be particularly suited for
cases when data sets are distributed across multiple decentralized devices as typical in federated
learning.

Its implementation and validation have been tested on a time series prediction problem (Air
Liquide use case, see section E.6). In conclusion, during this work we have evaluated the pre-
diction uncertainty by design (both aleatoric and epistemic) on an industrial use case.
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Robust & Embeddable - Deep Learning by Design As a reminder, this document follows a
batch 1 deliverable from Project EC4 "Trustworthiness by Design". This previous report con-
tains a broad introduction to the Uncertainty Quantification by Design. In particular, it intro-
duces the aleatoric and epistemic uncertainties, the connections between supervised and un-
supervised tasks, the bias and variance epistemic uncertainty decomposition, a state of the art
over predictive uncertainty quantification in particular for supervised learning tasks containing
multiple reviews, a discussion about out of distribution samples and use case applications.

E.2. Preliminaries

In the following we consider a vector 6 that describes the parameters (weights and biases) of a
Neural Network. We define p(0) as a prior distribution over this set of parameters. Commonly
used priors are Gaussian prior and Laplace prior that correspond respectively to an L2 and a L1
regularization of the vector 8. We refer as p(y|x, 0) the probability of a data item y given a data
item x and parameter 6. As an example, we aim at sampling the posterior of a Neural Network
designed for a supervised task. The posterior distribution over the parameters given a set of data
can be written as p(6|2) o< p(8) [T, p(yilxi, 0) where 2 = {(yi,x;)}Y,. Up to a constant, the
log of the posterior can be written as a loss

N
Z(0) = —logp(6) — Y log p(vilxi,0) (E.1)
=1

1

where the last term corresponds to the Negative Log-Likelihood (NLL). This is an illustrative
choice that does not reduce the generality of PBNN as we could have also considered an unsu-
pervised setup where 2 = {(x;)}Y, and .2 (8) = —log p(6) — YN, log p(x,6).

Note that in the following & indicates precisely the ensemble of datum (y;,x;) used for the
loss computation % (0) in the equation E.1. In particular, this data set can be a sub sample
(mini-batch) of the larger data set containing all known data points of the training set.

As a reminder, the usual maximum likelihood estimate corresponds to

OMLE — arg, max [log p(2(6)]

(E.2)
= argg max [Z 10g(P()’i|Xia 9))]

where p(2|0) is differentiable for a neural network and the maximum is evaluated through
gradient descent techniques.

Example: Mean Squared Error cost function and L2 regularization As an illustration, we
consider a Gaussian prior that writes

K
p(8) o< exp(—p[|013) = exp(—p )" 67) (E.3)

i=1
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with 6; the K parameters of the model. Using this expression we obtain
N
Z7(0) = —logp(8) — Y logp(yilx, 0)
i=1
v © (E.4)
= — Y log[p(yixi, 0)] + 1 Y 67 +csty
i=1 k=1
Suppose that we model the data by a Gaussian distribution with a fixed variance (homoscedas-
tic):
p(yilxi, 0) o< exp(—(yi — fo(xi))?) (E.5)
with fp(x;) being an arbitrary function (linear, polynomial, Neural Network etc...).
We then obtain <
(i = fo(x)*] + 1 Y 67 +esta (E.6)
1 k=1
which corresponds to the standard MSE loss in a regression task with a L2 regularization term.

-

Z9(0) =

1

E.3. Related work

We introduce in this section some relevant literature that studied how to take into account a
noisy gradient estimate of Vg% (6) computed from a subset of the data. The link between
noisy gradient and BNN posterior sampling is detailed in section E.4.2.

Stochastic Gradient Langevin Dynamics Max Welling and Yee Whye Teh (2011) Welling
and Teh showed that the iterates 6, will converge to samples from the true posterior distribution
as they anneal the stepsize by adding the right amount of noise to a standard stochastic gradient
optimization algorithm. This is known as the Stochastic Gradient Langevin Dynamics (SGLD)
where the parameter update is given by

041 =6, — T]IVG:??-@/(Q,) +V210:&

N & (E.7)
ZL7(6,) = —logp(6) — - log p(yilxi, 0)
i=1

where 1, € R™ is a learning rate and & is a centered normally distributed random vector. No
rejection step is required for a vanishing step size. The positive whole number # corresponds to
the size of the subsampled mini-batch. Chen (2014) Chen et al. [2014] later extended this idea
to HMC sampler.

Noisy Posterior Sampling Bias Due to a potentially high variance of the stochastic gradients
V¢-Z5(0), Brosse (2018) Brosse et al. [2018] showed that the SGLD algorithm has an invari-
ant probability measure which in general significantly departs from the target posterior for any
non vanishing stepsize 711. Furthermore, a recent work from Garriga-Alonso (2020) Garriga-
Alonso and Fortuin [2021] suggests that recent versions of SGLD implementing an additional
Metropolis-Hastings rejection step do not improve this issue, because the resulting acceptance
probability is likely to vanish too.
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Failures of Data Set Splitting Inference Other works have exploited parallel computing to
scale Bayesian inference to large datasets by using a two-step approach. First, a MCMC com-
putation is run in parallel on K (sub)posteriors defined on data partitions following p(68|%Z) <

K p(6)/Xp(2,]6). Then, a server combines local results. While efficient, this framework
is very sensitive to the quality of subposterior sampling as showned by de Souza (2022) Souza
et al. [2022].

E.4. Penalty Bayesian Neural Network

E.4.1 Unbiased Posterior Sampling

We suppose that the data set points (y;,x;) are sampled from an unknown distribution p(y,x)
that can provide an infinite number of independent and identically distributed (i.i.d) random
data points. This allows us to properly define a true unbiased loss .Z(6) as the mean over all
possible data sets .Z(0) ~ Z»(0) with

3(9) = —logp(G) _NE(y;,x;)Np(y,x) [logp(yi\xi, 9)] (ES)

given a fixed size N of a random data set &. In order to sample from this log-posterior, we note
that detailed balance is a sufficient but not necessary condition to ensure that a Markov process
possesses a stationary distribution proportional to e=<(®). Concretely, the detailed balance can
be written as

A(8,6')q(6]6")e %0 = A(6',8)q(6'|0) (E9)

where A(8’, 0) corresponds to the acceptance of the move from 6 to 6’ and ¢(6’|0) is a proposal
distribution. The loss difference writes

A0',0) = 2(0')— 2(0) (E.10)

In the following, we assume that the true loss difference A(6’,6) is unknown, and loss differ-
ences can only be estimated based on random data sets . Then we can introduce a random
variable 8(0’,0) providing an unbiased estimator of A(6’,0) which we assume as normally
distributed

5(0',0) ~ .4 (A(,6),06%(6,0)) (E.11)

The variance 62(8’, 0) typically decreases with the size N of the random data sets 2.

This noisy loss 6(6’,0) introduces a bias in the posterior sampling if not correctly taken
into account. In the context of statistical physics and computational chemistry, Ceperley and
Dewing (1999) Ceperley and Dewing [1999] have generalized the Metropolis-Hastings random
walk algorithm to the situation where the loss is noisy and can only be estimated. They showed
that it is possible to still sample the exact distribution even with very strong noise by modifying
the acceptance probability and applying a noise penalty —c2(6’,0)/2 to the loss difference in
the acceptance ratio A such that

A(5,6,6') = min (1755(9’79)*“2(9”9)/2) (E.12)
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One can then show that detailed balance is satisfied on average

/d5A(5, 0,0)q(0]6").4(5:A(6',8),62(6',0))e
(E.13)
:/d8A(5,9’,0)q(9’\9)</V(8;A(6,9'),62(9,6’))

which is sufficient condition for the Markov chain to sample the unbiased distribution in the
stationary regime. As shown by Ceperley and Dewing in the special symmetric proposal distri-
bution ¢(0’|0) case, the acceptance satisfies the equation E.13 with

/dﬁA(S,G,9/)JV(5;A(9’,9),02(0’,9))

_A (E.14)

() o )

where erfc is the complimentary error function. The penalty method can further be extended to
a non symmetric proposal distribution ¢(6’|0) used in algorithm 1.

Algorithm 1 PBNN Metropolis Adjusted Algorithm
9; — 00
fort < 0to T do
8’ ~ q(6'6;)
A(6,0',6;) + min (1, ZEZ‘,\Z:;e—5(9'791)—02(9’,9,)/2)
u~%(0,1)
ifu<A(5,0’,6,) then
0410’
else
011 6
end if
t<+t+1
end for

From equation E.12 one can immediately recognize the drawback of PBNN leading to an
exponential suppression of the acceptance since the variance 6(8’,8) is always non negative.
Note further, that in the case of BNN posterior sampling, 62(6’,8) is in general not known
either, and can only be estimated, too. Whereas it is possible to extend the scheme to account
for noisy variances Ceperley and Dewing [1999], we will not pursue this here.

Let us stress that the penalty term serves to exactly account for the uncertainty in calculating
the loss .Z(0) of equation E.8 for a finite number of random data. However, it does not address
the actual uncertainty introduced by setting £ (0) ~ Z%(6), e.g. equation E.8 and equation
E.1.

E.4.2 Langevin Dynamic Penalty

Choosing a non symmetric proposal distribution ¢(6’|6) can speed up the mixing of the Markov
Chain and help PBNN scale to larger systems by maximizing the acceptance A(6’,0). We first
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consider the situation where the proposal distribution depends only on the two states 6 and 6’
and not on any given mini-batch . In the absence of noise, the Metropolis-Hastings acceptance

writes
. q(016’) A(0',0
A(6',0) = min (1 @]0) e >>

~min|( 1, (9|9)e (6-0"):(Vo.2(0')+V6.2(0))/2
q(6'16)

(E.15)

where we have Taylor expanded the loss .Z(0) around 6 assuming a sufficiently small step
from 6 to 6. The maximization of A(6’,0) leads to a Langevin equation where the gradient of
the loss introduces a drift in the Gaussian proposal distribution

q(0'16) = .4 (6":6 —nVe.£(6),21) (E.16)

Sampling a new state 6’ from the proposal distribution ¢(6’|6) corresponds exactly to drawing
a centered reduced normal random variable €, and computing

0 =0-nVeL(0)+/2n¢ (E.17)

The non-trivial term in the Metropolis-Hastings acceptance then writes
q(610") _a0'0)
1
> ( @0)°
—1
=7||n(Ve$( N +VeZ(0)) —/2ne|? (E.18)

+*\|\ﬁ€\l2 6')+-2(6)

This algorithm is called Metropolis-Adjusted Langevin Algorithm (MALA). We write N =
02 /2 as an analogy with the learning rate in a gradient descent.

Algorithm 2 Metropolis-Adjusted Langevin Algorithm (MALA)

t<0
9; — 9()
for N do
& ~ JV(O, Id)
0"+ 6, —NVeZLy(6)+2ng
A(6',6,) + min (1 %)
u < sample % (0,1)
ifu <A(60',6,) then
611 o’
else
0,11 < 6
end if
t+t+1
end for
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The Unadjusted Langevin Algorithm (ULA) corresponds to the same algorithm without the
MH acceptance step in the vanishing 7 — 0 limit.

Algorithm 3 Unadjusted Langevin Algorithm (ULA)
t<0
6, +— 9()
for N do
7, < a vanishing value as t — oo
& ~ N (0, Id)
041 6, —N Vo Z5(6,) + 21,8
t—t+1
end for

Note: we notice that for ), — 0 any noise coming from the energy in 1,Vy.%5(6;) is domi-
nated by the random walk noise /21, ¢;. -

In order to use a noisy gradient Vy.Z(0) ~ V.24 (0) as an approximation of the Gaussian
mean’s drift, SGLD Welling and Teh requires a vanishing learning rate to dominate the noise
and maximize the acceptance. On the other hand, one could design an optimized proposal
distribution ¢(6|0’) and set a non zero step size while computing the full Metropolis-Hastings
acceptance

/ o q(6:]0") —6(9’,9,)—02(9’,9,)/2)
A(6',0) = min (1, q(@’\@,)e (E.19)
The PBNN’s noise penalty explicitly targets the bias introduced by a noisy loss. In fact, in
the equation E.19, the corresponding Monte Carlo loss minimization (i.e. introducing a zero
temperature limit) corresponds to finding the set of parameters 0 that minimizes both the noisy
regularized loss and its associated uncertainty.

For large size models, biased samplers like the Unrestricted Langevin Algorithm (ULA) are
known to be very effective as they skip the rejection step i.e set A(6’,0) = 1 for a sufficiently
small step size 1 resulting in an unrestricted Langevin sampling as

In order to model a noisy estimate of the loss, it is tempting to replace the drift V.2 (6,) with
an unbiased estimator such that

NVe.Z(0) =nVo.Z5(0)+no(0) (E21)

where :2’?;(9) is defined in the equation E.7. For a vanishing step size 1 — 0, one may then ex-
pect that the additional noise term 1o (60) gets negligible compared to the random noise of order
n'/2 in the equation E.20. However, the uncertainty of the loss gradient 6(8) does in general
not result in white noise, but is correlated between different parameters 6. For non-vanishing 7
the noisy loss gradient can thus trigger a significant departure from the target posterior, see also
Brosse et al. [2018].
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As we will see in the numerical experiments section, PBNN’s ability to evaluate the likeli-
hood over small mini-batches even in the presence of a strong noise allows us to calibrate the
Bayesian predictive distribution. This is especially convenient in comparison with usual BNNs
as the regularization is handled solely by the prior distribution p(6). Commonly used uninfor-
mative priors can lead to poor performances as they do not target explicitly overfitting but rather
the complexity of the model i.e. L2 and L1 penalties. As a reminder, other conventional methods
such as early stopping are not compatible with the Bayesian approach developed for BNN.

E.4.3 Noise Penalty Estimation

As showed in equation E.12 in the case of a symmetric proposal distribution ¢(6'|0), the energy
difference 5(6’,6,) has to dominate the always positive variance 62(8’,6,)/2 in order to obtain
areasonable acceptance A(8,0’,6,). However, in practice a noise penalty usually strongly dom-
inates any gain in energy from 6, to 6’ if the energy difference is computed only on a single
small mini-batch 2. This leads to an exponentially suppressed acceptance and long correlation
times of the MCMC.

To prevent this situation, we define §(6’,0) as an empirical average over the loss difference

M
5(0',0) = % 2 (L2,(0") = ZL2,(0)) (E.22)

where Z; corresponds to randomly chosen mini-batches. By definition the average is an unbi-
ased estimator such that E[6(60’,0)] = A(6’,0). We notice that the central limit theorem ensures
that §(0’, 6) is normally distributed in the limit of large M as required by equation E.11.

The variance of the random variable &(6’,0) strictly decreases with the number of mini-
batches M since 62(6',0) = 62,(6’,0)/M where 62, corresponds to the expected variance of a
single loss difference computed over a mini-batch &. Both Gé and o are unknown, but we can
compute an estimate of 62(8’,0) ~ x%(6’,0) using an unbiased chi-squared estimator

x°(6',6)
M
= i) L (£4(0) = 25,(0) = 6(0'.0)) 29

In the following, we do not take into account the error over the estimation of the variance
62(8’,0) which corresponds to the hypothesis that variations of x2 as a function of 6’ and
largely dominate over the noise. Leading order corrections in this noise are discussed in Ceperley
and Dewing [1999].

A second approximation can be introduced in case of a limited access to the data: drawing
M mini-batches with replacement artificially decreases the variance at the cost of introducing a
bias (i.e. violates the i.i.d. hypothesis of the energy differences).
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E.5. Experiments

E.5.1 Data Set

We study the performance of PBNN on a synthetic data set that contains the positions of a double
pendulum over a simulated time ¢. These positions are obtained by integrating Euler-Lagrange
equations casted as ordinary differential equations. We turn a time series forecasting problem
into a supervised regression task. We model the distribution p(y|x) where y € R* corresponds
to the four Cartesian coordinates of the two masses of the double pendulum and x € R*> are 5
given y past positions of the masses. The data set 2 = {(y;,x;) }_, inputs x; write

Xt = (Y1-205 -+, Yr-24) (E.24)

where ¢ is the discrete simulation time. The system is strongly chaotic such that learning on a
given limited data set can lead to strong predictive overconfidence as suggested in figure E.1.
We thus expect the noise penalty to play an important role on the realization of a supervised task
based on this data set.

The code that generates the double pendulum dataset is available following this link: https:
//gitlab.com/eijikawasaki/double-pendulum
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Figure E.1: Pendulum data set extracts from a single simulation run. The blue curve corresponds
to one of the Cartesian coordinates of one of the masses in function of time. As an example, the
behavior on the bottom (part of the test data set) is hard to predict knowing only the data from
the top (part of the training data).

E.5.2 Benchmark setup

The goal of this section is to compare the performances between PBNN and other BNN that
do not include any noise penalty. We show empirically that the PBNN obtains good predictive
performances even while evaluating the loss on small mini-batches and therefore introducing a
strong noise. On the other hand, as expected PBNN has a much lower MCMC acceptance rate.


https://gitlab.com/eijikawasaki/double-pendulum
https://gitlab.com/eijikawasaki/double-pendulum
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We also compare the PBNN to SGLD which is designed to take into account a stochastic noise
in the loss computation.

In the following, we sample the posterior based on MCMC random walkers where ¢(6’|6;)
is a symmetric proposal density. We use a Gaussian distribution centered around 6; and adjust
its variance to ensure the ergodicity of the Markov process. We model the data distribution with
a single multivariate Gaussian likelihood p(y|x, 8) = A4 (y; te (x), 5 (x)) where pig(x) € R* and
¥2(x) is a positive diagonal covariance matrix parameterized by 67 ,(x) where d € {1,2,3,4}.
This model is thus heteroscedastic: we use a Mixture Density Network Bishop [1994] such that
both g(x) and X3 (x) are outputs of a neural network that takes x as an input. We observe
empirically that a homoscedastic model based on a Mean Squared Error loss has a noise penalty
that is several orders of magnitude smaller than its heteroscedastic counterpart.

The loss of a NN is known to have numerous local minima and we don’t use in the experi-
ment any transition kernel for PBNN designed to jump between separate minima. We thus limit
our study on the impact of the penalty method on a relatively small model that is easier to sam-
ple. The dimension of the vector parameter 6 is equal to 419 as we consider a NN with 2 hidden
layers each containing 10 neurons. The data consists in 9975 data points sequentially (i.e. not
randomly) split into a 2992 points as a training data and 6983 points as a test data set. We use
a Gaussian uninformative prior p(0) < e Mol corresponding to a tiny L2 regularization of the
NN parameters of magnitude A = 107>. During the posterior sampling, only the training data is
used in order to compute the loss % (8) and thus both §(6’,6) and x2(6’,6).

The performance of the prediction (based on the inferred parameters 6 sampled from the
posterior) is measure by the the average Negative-Log-Likelihood (NLL) that we define as

L J
NLLg = —% ; log (} ;p(yi\xi, 9%) (E.25)
where the data set 2 of size L corresponds either to the train or the test sets. 8(/) are J i.i.d.
samples of the MDN parameters obtained from the Markov chain. Note that this measure should
not depend on 6 since the MDN prediction is marginalized over the posterior parameters distri-
bution.

The mini-batch size N in equation E.1 determines the target posterior distribution that is
sampled and therefore changes the value of NLL4. For a constant uninformative prior, decreas-
ing N corresponds to increasing the variance of the predictive function. This is a straightforward
consequence of Bayes theorem using an uninformative Gaussian prior with a huge variance. In
order to compare the performances of the prediction of a BNN and a reference standard "vanilla"
BNN that does not use mini-batches, we compute one-sigma confidence intervals as drawn in
the figure E.2. As an example, we compare them to a Gaussian predictive distribution and target
an expected coverage of approximately 68.2%. To check the accuracy of the UQ method, we
compute the Average Coverage Error (ACE) defined in the equation E.26.

L if yia € [pg (i) — 07 (xi), g (i) + 05 (xi)]

1 L 4
ACE = |68.2% — — ;
‘AL Z Z Pid 0 otherwise

i=ld=1

with Piad = {
(E.26)
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where (; and o are the mean and the standard deviation in one of the four dimension d of
the empirical predictive distribution as defined in equation E.27.

E.5.3 Numerical Results

Table E.1: Performance benchmark. The top and bottom groups of models correspond to the
predictive performance based on a likelihood weight corresponding respectively to N = 2992

and N = 60.

Model Test NLLy Train NLLgy Test ACE

Vanilla BNN —4.11+£0.01 —5.36+0.01 7.1% +0.3%
Tempered BNN —1.96+£0.08 —2.05+£0.10 3.9%+1.1%
Batched BNN —1.68+0.17 —1.744+0.19 1.7% +1.6%
pseudo-SGLD —2.35+0.10 —2.48+0.11 4.8% +0.8%
PBNN -3.91+0.07 -4.83+0.09 0.4% +2.3%

From table E.1 we empirically show that PBNN achieves a better overall performance than
other biased sub sampled models for a small mini-batch size. As an illustration, figure E.2 shows
the error bars of the prediction over a random period of time for each model. The empirical
predictive distribution is defined as

Elp(yi|x:, 0) (E.27)

J
Z yt‘xla

where ¢ is the simulated time and 8(/) are J samples obtained by the MCMC computation. The
expected value in the equation E.27 is computed over the targeted posteriors which are different
for every model studied in the benchmark.

It is important to note here that even for a same likelihood weight N in the Bayes theo-
rem, we do not expect the same prediction between models that use the whole train set, like
"vanilla" BNNs and the PBNN as they do not target the same posterior sampling. The vanilla
BNN samples a posterior proportional to e~<7(?) whereas PBNN aims at sampling a posterior
proportional to e=<(®) where . (0) is the loss expected for a given size N of mini-batch & as
defined in the equation E.8.

Vanilla BNN We call this first model "vanilla" as it corresponds to a standard MCMC ran-
dom walk based BNN with no mini batches. Vanilla BNN’s acceptance writes A(6',6;) =
min(1,e=%7(9)+25(6))) where 2 contains all the 2992 available train data points. This model
thus uses the whole train set to compute the loss difference for each new proposed state 6'.
Note that Langevin algorithms such as MALA or HMC all sample the same posterior. The only
difference with this model is in their efficiency as they are designed to maximize the MCMC
acceptance and the ergodicity of the Markov Chain.
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Figure E.2: Models predictions over a test data set example extract. The blue line corresponds to
one of the Cartesian coordinates of one of the two masses. Mean models predictions are in red
and one standard deviation regions are plotted in grey. The horizontal axis corresponds to the
the simulated time ¢. The four figures from top to bottom correspond respectively to the models:
Tempered BNN, Batched BNN, pseudo-SGLD and PBNN.

The ACE is approximately zero on the training set and significantly different from zero on
the test data set. In the limit of a single mini-batch containing all the training data set, the PBNN
coincides with this model. In the following we aim at calibrating the PBNN predictive prediction
while maintaining good predictive performances.
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Tempered BNN In order to provide a comparison between the usual "vanilla” BNN and a
PBNN, we adjust the likelihood weight following

2992

Y logp(yilxi,6) (E.28)
=1

—logp(6) — 2992

Indeed, we balance the loss to be equal to PBNN’s likelihood that uses mini-batches with N = 60.
This adjusted weight over the likelihood corresponds to the Safe Bayes approach where we vary
the weight of the likelihood thanks to a temperature T following p(2|0)'/T as discussed by
Wilson (2020) Wilson and Izmailov [2020]. In our case T > 1 is known to help under model
misspecification as it is the case in the double pendulum Gaussian prediction example.

The resulting temperature 7 = 2992 /60 is however such a high temperature that the prior
regularization dominates the likelihood for this model. The resulting predictive performance is
unsatisfactory as shown in the table E.1.

Batched BNN The acceptance for this model is defined as A(S,6’,6,) = min(1,e~%(%"6))
with 8(0’,6;) computed with M = 100 and N = 60. The number of mini-batches used by this
model is the same as the number used by the PBNN for a fair comparison. The only difference
with the PBNN model is the noise penalty e %7(0".6)/2 in the acceptance. Table E.1 therefore
demonstrates the impact of the penalty method, strongly improving the overall performance of
the model.

pseudo-SGLD The SGLD algorithm is designed to naturally take into account noise from
sub-sampled data. Standard SGLD with a weight N =2992, i.e. the number of training samples,
in equation E.7 leads to results that are similar to the Vanilla BNN both in terms of negative
loglikelihood and coverage. In this benchmark we want to test the ability of the algorithm to
handle a noisy loss. We therefore set N = n = 60 with a constant learning rate n = 10~ and
call the resulting model a pseudo-SGLD. Comparing to PBNN, we observe in both table E.1 and
figure E.2 that the noise is too high for the SGLD in this setup. The performance of SGLD could
probably be improved by decaying the step size 17 polynomially as suggested in the literature
Welling and Teh. As a reminder, this model has the great advantage of not requiring a rejection
step.

PBNN The noise penalty is estimated following equations E.22 and E.23 with M = 100 and
N = 60. The random walk acceptance for PBNN writes

A(57 6,7 9[) = min <] , 3*5(9’@)712(9’79,)/2)

We have adjusted by hand the mini-batch size N = 60 in order to calibrate the models to optimize
the test data set coverage.

There is a noticeable gap of PBNN’s performance between the train and the test data sets that
is not intuitively described in the theory of PBNN. This overfitting is probably caused partially
by the access to a limited amount of data. Indeed, during the Monte Carlo sampling, all mini-
batches Z are part of the same training data and not i.i.d. sampled from a probability distribution
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p(2). In an ideal situation where we could evaluate both & and x? from i.i.d. samples Z ~ p(2)
as required by the equations E.22 and E.23, we expect a lower overfitting effect.

E.5.4 Mini-Batch Size N

For the purpose of the benchmark we have calibrated PBNN error bars in the table E.1 by tuning
the mini-batch size N. One can wonder what is the optimal value of NV in a general purpose
outside the scope of calibration and for a given data set size. Figure E.3 shows that, as expected,
the prediction performance measured as the negative loglikelihood NLL 4 over the test data set
increases with N. On the other hand, the acceptance rapidly drops because the number of mini-
batches M in equation E.23 decreases for a constant data set size. In the figure E.3 we indeed
notice a linear decrease of the log-acceptance due to the decrease of the number of available
mini-batches M. The optimal value of N is therefore a trade-off between reasonable acceptance
and good predictive performance.

—~ 0 : ‘ ‘ ‘ 100
9 negative loglikelihood +—«—
E acceptance —=—
a coverage
g -1t 1 90
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mini-batch size

Figure E.3: PBNN performance measured by NLL, over the test data set, acceptance in base
log,, and one sigma coverage in function of the mini-batch size N for a constant prior. The
standard deviation continuously decreases in function of the batch size. We notice however
that the coverage is not monotonous: it is determined by both the error bars size and by the
loglikelihood.

It is important to note in the figure E.3 that different batch sizes result in different coverages
for a constant uninformative prior. As we have shown the PBNN predictive distribution can
be calibrated. In practical setups as discussed by Hermans (2021) Hermans et al. [2021], it
is recommended to compare the expected coverage probability of the predictive distribution
defined in equation E.27 to the empirical coverage probability as shown in the equation E.26.

E.6. Use Case: Air Liquide demand forecast

We have developed a python library delivered to the confiance.ai program, it contains:
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* a MCMC module that is able to sample a distribution in high dimension that is defined up
to a constant

* a Mixture Density Network module to take into account the aleatoric component of the
uncertainty

* an Uncertainty Quantification module that samples a Bayesian Neural Network posterior
using MCMC

We apply PBNN to the Air Liquide demand forecast use case. Examples are shown in figure
E.4. The data batch size as defined in equation E.1 is set to N = 20. We compute the error bars
coverage as defined in equation E.26.

We compare these results with a naive batched BNN using N = 20 with no penalty term. We
observe in the figure that the noise penalty has a dramatic effect on the predictive performance.
Performance is measured as defined in equation E.25.

The figure E.4 demonstrates that, using PBNN, it is possible to train a Bayesian Neural Net-
work on batched data from the Air Liquide use case. As expected we observe on the left column
that standard BNNs obtain bad predictive performances while trained on data sub-samples. In
contrast, the right column shows that we obtain good predictive performances with PBNN that
use batches of N = 20 sub-sampled data points.

The sub-sampling is useful for computational efficiency and also for the uncertainty quantifi-
cation calibration. Indeed, we have shown that varying N i.e. the size of the batches corresponds
to varying the weight of the likelihood in the Bayes equation. Using an uninformative prior, de-
creasing the mini-batch size corresponds to increasing the size of the error-bars in the figure E.4.
It is thus possible to calibrate them to match the expected and empirically observed coverage.

The Air Liquide use case data size is not compatible with large model training. As an
outlook, we thus aim in the next project phases to apply the PBNN concepts to data and use case
that require bigger models and study the impact of mini-batch in the training of BNNs.
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E.7. Takeaways and Perspective

Uncertainty quantification for the predictions of large size neural networks remains an open
issue. In this work, we have shown a new way to enable data sub-sampling for Bayesian Neural
Network independent from gradient based approximation such as Stochastic Gradient Langevin
Dynamic.

First, we have demonstrated that a raw estimation of the likelihood based on a noisy loss
introduces a bias in the posterior sampling if not taken into account. We then have shown that a
generalization of the Metropolis Hastings algorithm allows us to eliminate the bias and to exactly
sample the posterior even with very strong noise. This necessitates an additional "noise penalty"
that corresponds to the variance of the noisy loss difference and exponentially suppresses the
MCMC acceptance probability.

In practice, the noise penalty corresponds to replacing a single large data set by multiple
smaller sub sampled mini batches associated with an uncertainty over their losses. We have
shown how to interpret this term as a regularization. Varying the size of the mini-batches enables
a natural calibration that we have compared to other techniques such as tempered Safe Bayes
approaches.

Based on this calibration principle, we have provided a benchmark that empirically showed
good predictive performances of PBNNs. We hope that combining data sub-sampling with other
Monte Carlo acceleration techniques such as HMC could allow to compute uncertainties for
model sizes not reachable until now.

Lastly, PBNN could be particularly suited in the case when the data sets & are distributed
across multiple decentralized devices as in the typical federated learning setup. Indeed, the
noise penalty is determined by the variance of the losses computed on each individual data set.
In principle, PBNN should enable the possibility to compute uncertainty with separate data sets
without exchanging them.
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coverage: 80.17% loss: -7.842 coverage: 80.45% loss: -8.2
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coverage: 81.21% loss: -7.952 coverage: 78.32% loss: -8.401

coverage: 79.32% loss: -8.042 coverage: 81.59% loss: -8.445

coverage: 80.45% loss: -7.882 coverage: 84.7% loss: -8.294

Figure E.4: 4 examples of Air Liquide demand forecast prediction. Left figures correspond to
vanilla BNN with batched loss and right figures correspond to PBNN.



Chapter F

Influence Function for time series

Disclaimer: This chapter is a Work In Progress. A final version should be delivered by the
end of December.

Foreword

Some sections of this chapter are either verbatim copies or adapted from existing Confiance’s

reports.
TODO: add acronym: RNN, IF, TS
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F.1. Motivation

Influence Function (IF) has already proved its potential for Dataset Exploration and Cleaning in
Picard et al. [2022] and references therein. However, very few works on IF really focused on
Time Series (TS) and fewer looks at its application to sequential-based models such as Recurrent
Neural Networks (RNNs). Inspired by the work of Alaa and van der Schaar [2020], which lever-
ages IF properties to estimate predictive uncertainty of an RNN model, we wanted to challenge
the DEEL’s library Influenciae in order to apply their approaches on a Confiance’s Use Case:
Air Liquide EMS dataset.

F.2. Influence Function for Time Series

F.2.1 Introduction to Influence Function
1

Based on the work of Hampel [1974] we will formulate the theory of existence of the 1in-
fluence function (IF) of statistical functionals, and we will later describe how to define it for
parametric neural network models. Let Q be a complete separable metric space, let T be a
vector-valued mapping from a subset of the probability measures on Q into the k-dimensional
Euclidean space R¥, and let F lie in the domain of T. Let &, denote the atomic probability
measure concentrated in any given @ € . Then the vector-valued influence function of T at F
is defined pointwise by:

IFrp(0) = él_lf(l) T[(1-¢)F %—885(0] —T(F)

(E.1)
if this limit exists for every point in @ € Q

The intuition here is that we focus on the optimal estimator 7 changes, T being a M-
estimator, when the distribution it is trained on changes in the direction of 8,. In practice,
these changes can be the addition or subtraction of a given data-point or group of data-points.

In their seminal work Cook and Weisberg [1980] are one of the first to look at its practical
applications. In particular, they compute the influence function of linear regression models
empirically, that is, by seeing how the linear coefficients change when a point is taken out of the
training set. They use this information to determine which data-points are the most influential.
To better analyze this “influence”, they define the famous Cook’s distance metric that can be
defined as follows:

Di(X"X,ps*) = (F2)

IThis introduction was adapted from the deliverable ISX-EC5-L5.2.4.1-Anomaly_Detection_on_Images
available at https://irtsystemx.sharepoint.com/:b:/s/IAdeConfiance833/
ESUwps90pfNNpUXb1iMWXvEBrrqT6Lsx7yKdTa9mSFfQjw?e=hVJIilE


https://irtsystemx.sharepoint.com/:b:/s/IAdeConfiance833/ESUwps90pfNNpUXb1iMWXvEBrrqT6Lsx7yKdTa9mSFfQjw?e=hVJi1E
https://irtsystemx.sharepoint.com/:b:/s/IAdeConfiance833/ESUwps90pfNNpUXb1iMWXvEBrrqT6Lsx7yKdTa9mSFfQjw?e=hVJi1E
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where X is the data matrix, 3 the coefficients of the linear model trained on the whole dataset,
and f3(;) those of the model trained on the dataset with the i-th data-point taken out.

Moving forward in time to 2017, Koh & Liang publish their first paper on the concept of
influence function applied to neural network models. In Koh and Liang [2017], they propose a
mathematical formulation that is easily applicable to this kind of model thanks to their built-in
ability to compute gradients on modern auto-differentiation ML frameworks. Essentially, for a
group of training points zi, ...,z, Where z; = (x;,y;) € Z X %, a set of parameters 6 € ©, a loss
function /(z,0) and an empirical risk minimizer § = argmin(;e@% Y 1(zi,0), they posit that
the change in model weights induced by infinitesimally up-weighting a data-point is equal to:

jup,loss(zyztesl) = _VGZ(Ztest; G)THgIVGI(Zy é) (F.3)

where Hy = %Z?:l V21(z;, ) is the Hessian and is assumed to be positive definite.

They apply this technique to the comprehension of the model’s predictions, the detection of
potential outliers and the fixing of mislabeled data-points.

As a potential limitation, the authors raise the issue of the computational challenge of cal-
culating and inverting the Hessian with respect to the parameters, a problem that grows quadrat-
ically with the amount of the model’s parameters. To solve this problem, they propose two
solutions in their paper: the direct computation of the inverse Hessian-vector products through
conjugate gradient descent, and the stochastic estimation of the Hessian through sampling and
through the first Taylor expansion of the inverse.

F.2.2 Influence Function & RNN

Recurrent Neural Networks (RNNs) are sequence-based models which have been proven to be
effective in a wide-range of domain applications involving temporal sequences such as: stock
market predictions Bao et al. [2017], service demand forecasting Wen et al. [2017] or reinforce-
ment learning Wang et al. [2018]. As for any Machine Learning system estimating (reliably)
predictive uncertainty of RNNs is of utmost importance as they can be used in high-stakes ap-
plications. Even though various research works were conducted for uncertainty estimation in
feed-forward networks (e.g. Lakshminarayanan et al. [2017]), equivalent methods for RNN
models are still lacking.

In this context, the work of Alaa and van der Schaar [2020] particularly stand out, from our
point of view, as they leveraged IF in order to get an estimate of prediction uncertainty for RNN
models. In order to do so, they adopted a frequentist approach that is to create multiple perturbed
version of a trained RNN model and collect the outputs of these perturbed copies. Confidence
intervals are then built based on the jackknife residuals and the variability of these resampled
outputs. As it can be noticed, the procedure is entirely post-hoc, hence it neither interferes with
model training nor compromises its accuracy.
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Since RNNs rely on sequences, the generation of perturbed versions operates on "blocks" of
dependent data point, in our context entire time series, instead of individual observations. Thus,
they used a blockwise influence function .7 (.), a generalization of conventional IF, to estimate
the parameters of the model if a specific data block was removed of the training dataset through
the relationship in F.4:

7 (DataBlock) ~ Ogyn (D) — Oryn (2 \DataBlock) (F4)

where & denotes the training dataset effectively used for training the original RNN model
parameterized by Ogyy.

The overall process could be sum up as follows:

(Step 1) Train a RNN model of parameters éRNN on Y

(Step 2) Sample DataBlocks from &

(Step 3) Compute the influence vector: IF by applying .# on each sampled block
(Step 4) Using F.4 estimate Ogyy(2\DataBlock) for each block

(Step 5) For each perturbed model get the perturbed predictions: it will constitute the predic-
tion variability set: ¥

(Step 6) From ¥ build Confidence Intervals

F.3. Experiments

F.3.1 UC: Air Liquide, modified EMS

In order to challenge the approach proposed by Alaa and van der Schaar [2020] we were looking
for a Use Case where RNN models could be an interesting solution. Naturally, the Air Liquide
EMS dataset appeared to be a relevant use case. However, it is composed of a large amount
of raw sensor data for different types of physical measurements (e.g. pressure, temperature)
acquired at a varying sampling rate over the course of a full year. As training the model is not
the main objective here we decided to focus on a subset built by Olivier Antoni and Marielle
Malfante from the CEA in their previous work ” that can be found in the Confiance’s wiki.

From the raw data, they first proceed to a resampling of the data using linear interpolation
to achieve a rate of one sample per minute. Then, they focus on time series of sensors whose
operating regime is rather stable in normal operation. This is especially the case with certain
temperature sensors for which the signal in normal operation consists of a main pattern, which
is periodically repeated over time, being slightly deformed. For these temperature sensors, the
period of the signal is approximately 7 hours. More specifically, a subset was built considering
only the System_3-TI1223.PV temperature sensor of the Air Liquide dataset.

ZParts of this subsection are directly copied or adapted from their section in the report ISX-EC5-LIV-1513-
L5.2.4.1-Anomaly_Detection_in_Time_Series__Promising_Tools
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Consequently, we have a regularly sampled and univariate Time Series which will be divided
into smaller Time Series. In all the experiments, independently of the window splitting of Time
Series, data from the month of January will be used to build the training set, data from February
will constitute the validation set and March will constitute the test set.

F.3.2 RNN single-output

Model Architecture

Window splitting & Data normalization
Training procedure

Model performance analysis
Computing predictions intervals

F.3.3 RNN multi-output
Model Architecture

Window splitting & Data normalization
Training procedure

Model performance analysis
Computing predictions intervals

F.4. Results

F.4.1 RNN single-output

Some Examples
Statistics on Interval Length

F4.2 RNN multi-output

Some Examples

Statistics on Interval Length
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F.4.3 Limitations

Background work

Computation Power

F.5. Conclusions
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Chapter G

Lipschitz networks for robustness
by-design

G.1. Introduction

Deep neural networks are known to be vulnerable to adversarial attacks: an imperceptible per-
turbation in the input can yield a large change in the output and thus misclassify the input. This
sensitivity can be measured by the Lipschitz constant of the network, defined as the smallest
value L for which

Vxp,x2, [|f(x1) = f(x2) || < Llxi —x2|. (G.1)

A natural way to make networks more robust is to constrain the Lipschitz constant of the net-
work. This constraint can be enforced "by-design" in the layers of the network: such networks
are called Lipschitz networks.

The works presented here are the continuation of an action sheet in batch 1. Only the devel-
opments done in batch 2 are presented in this chapter. The reader should refer to the previous
Confiance EC4 report for a comprehensive description of Lipschitz networks and guidelines on
how to build and train these networks using the deel-lip library.

This chapter consists in three main contributions:

* New losses for 1-Lipschitz networks New losses are introduced to handle the accuracy-
robustness trade-off in binary and multi-class problems. These losses are compared on
CIFAR-10 and Renault Welding UC.

* Image semantic segmentation Lipschitz networks are used for robust segmentation,
which is a totally new task for this kind of networks. Two datasets are used: a toy public
dataset (Oxford IIIT Pets) and the Valeo Woodscape UC.

* Orthogonal convolutions A new way to encourage orthogonality in convolutions is pre-
sented. It is based on the use of a regularization term added to the main loss. This method
was proposed by the DEEL team.
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All the experiments in the sections below are reproducible with the available codes in the Git-
lab repositories: https://git.irt-systemx.fr/confianceai/ec_4/as1l_uc and https:
//git.irt-systemx.fr/confianceai/ec_4/as21_lipschitz. All models were built and
trained using the open-source deel-lip library: https://github.com/deel-ai/deel-1lip.
The deel-lip package, developed by the DEEL team, is maintained and frequently upgraded
to reflect the developments in Confiance.ai program.

G.2. New losses for 1-Lipschitz networks

1-Lipschitz networks handle a trade-off between accuracy and robustness. The loss is the key-
stone: a hyper-parameter in the loss controls this trade-off. This section introduces insights on
the loss hyper-parameter and presents new losses for 1-Lipschitz in multi-class problems.

G.2.1 Considerations on losses for Lipschitz networks

Let’s consider a standard neural network f defined by y = f(x,8), with input =, weights 6
and output logits y. A classification loss .Z(y,t), with label targets ¢, is minimized w.r.t the
weights 0 and we denote the optimal network fL(m) The subscript L is the Lipschitz constant
of the trained neural network. In practice, for unconstrained networks, this Lipschitz constant L
is usually very large.

Dividing naively the optimal network f; byAL gives a 1-Lipschitz network: f; = % fi. Note
that this new network is not more robust than f7; indeed the output logits %y are very close to
zero, and do not ensure that a small perturbation would not change the classification. We can
ask what loss must be chosen to get the same optimum f; if we directly train a constrained 1-
Lipschitz network? Transferring the Lipschitz constant L from the model to the loss, the solution
is straightforward:

ZL(y,t) = Z(fr(z).t)
= g(l’fl (:l?),t)
= Z.(fi(z),t)

Roughly speaking, the 1-Lipschitz f; trained with .%; gives the same classification results as the
L-Lipschitz network trained with .. In practice, the loss .7 has a hyper-parameter L, having
a similar behaviour as the Lipschitz constant of the network. Choosing a high L leads to a 1-
Lipschitz network with the behaviour of a standard network, i.e. accurate but not robust. A
small L reduces the accuracy but improves robustness. Finally, the hyper-parameter L tunes the
trade-off between accuracy and robustness. More details on the importance of the loss for 1-
Lipschitz networks are given in Béthune et al. [2021]. The losses presented below will highlight
this trade-off.


https://git.irt-systemx.fr/confianceai/ec_4/as11_uc
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G.2.2 Different hinge losses for multi-class problems

The robust hinge loss for binary classification is simply defined as
ghinge = (m_y't)+ (GZ)

with logit y, class target ¢ (being +1 or -1), x* = max(x,0) and margin m € R to handle the
trade-off between accuracy and robustness. A loss with a large margin m tends to produce high
logits, far from the decision boundary, and thus improves robustness.

Extending the binary case to multi-class, we can distinguish two approaches that we call
one-vs-one and one-vs-all approaches. Both approaches can be derived in a standard version or
a zero-centered version. We will thus describe 4 possible configurations combining 1-vs-1 or
1-vs-all approach with zero-centered or uncentered version. We also design a new formulation,
called weighted hinge loss, which is a generalization of the two 1-vs-1 and 1-vs-all approaches.
Remember that all equations below are written for a single element (input). The loss for a whole
batch is the average of this element-wise term for all the inputs in the batch.

G.2.2.1 One-vs-one version

The one-vs-one formulation for N, classes is defined as follows:

1 +
egl—vs-l = ﬁ Z <m - (yc _yi)) (G3)
€ i#c

The term (y. —y;) is the difference between the predictions for the true class ¢ and another class
i. These differences are encouraged to be larger than the margin m. This version is the one
defined in PyTorch MultiMarginLoss and in deel-lip MultiMargin.

The above formulation can be adapted to get zero-centered predictions: the same margin m is
incited but the predictions are forced to positive for the target class and negative for others. The
zero-centered one-vs-one version in Eq. (G.4) is implemented in deel-lip MulticlassHinge.

1 m + m +
centered
tered _ ___ ——y) 4+ (=4 G.4
1-vs-1 NCI;&ZC |:<2 yL) (2 yl> :| ( )

G.2.2.2 One-vs-all version

Unlike the one-vs-one version expressed as an average on multiple one-vs-one losses, the one-
vs-all configuration is based on the maximum prediction among all other predictions y;:

+

Dvs-all = <m - (yc - Ig?x)’i)> (G.5)
C

The term (y. —max;.y;) is the difference between the prediction for the true class ¢ and the

largest prediction for other classes i # ¢. Unlike the one-vs-one approach, only the smallest dif-

ference (y. —y;) will be taken into account to compute the loss. This one-vs-all version is the one

provided in TensorFlow/Keras CategoricalHinge and also in deel-lip CategoricalHinge.
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We can also adapt this loss for a zero-centered version:
m + m *
et = (5 =ve) + (5 +maxy (G.6)
2 2 i#c

G.2.2.3 Weighted-hinge version

The weighted-hinge loss is a generalized formulation of the two losses presented above. A
weighting term based on softmax is applied to each hinge term. A temperature factor 7 is
introduced in the softmax to slide between the 1-vs-1 and the 1-vs-all versions. The weighted
hinge term for a single element is defined as follows:

i

+
gweighted—hinge = Z Wi <m - (yc _yi)> with w; = W (G.7)
7 =

The weights w; are the softmax of the logits except for the logit from the true class c, i.e. the
logits i # c. Since the weights result from a softmax operation, the sum of these (N, — 1) weights

equals to 1. Note that:

* atemperature T = 0 gives weights all equal to w; = ﬁ This is equivalent to the 1-vs-1
N,

N—1

formulation, ignoring a multiplication factor

* atemperature T — oo is strictly equivalent to the 1-vs-all version: w; = 1 for the neuron
having the highest logit (i = argm;tx y;) and w; = O for all other neurons.
Jj#e

Like the formulations above, the weighted-hinge loss has a centered version:
m + m +
L= Lo | (5 -5) + (5 +3) G3)
i#c

G.2.2.4 The squared hinge losses

All the hinge losses formulated above can also be derived in squared hinge versions. In the
previous equations, all ReLU terms (x)* are squared: (x)*".

G.2.3 Auto margin hinge losses

A drawback of hinge losses, as presented above, is that the margin hyper-parameter is difficult
to choose. Moreover, in the multi-class setting, there is no evidence that a single margin should
be chosen for all classes. Obviously this will be problematic for large scale datasets such as
Imagenet with 1000 classes.

Within the DEEL project (www.deel.ai), a new loss has been proposed and published in Ser-
rurier et al. [2022] to automatically adjust the margins with a single hyper-parameter a. The
principle will be explained with 1-vs-all version but can be applied with any hinge variant. The
loss for a single element of class ¢ with the corresponding margin m, is
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Jr
LN = <mc —(ye— Ig?f%)) —ome (G.9)

Making this margin m, learnable, it will be updated according to
8.0 _ {l —a, ifme>y.—max;zy;. (G.10)

ome —o,  otherwise.

Thus, summing over all samples of class c, m, variable will be increased (resp. decreased)
if less (resp. more) than a fraction of o samples are within the margin, i.e m. > y. — max;..y;.
The margin m,. will be automatically adjusted such that only « percent of samples are smaller
than the margin.

Serrurier et al. [2022] also propose a weighted hinge version with automatic margin:

m + m + ) Wi
vggi[ghted—cemered—hinge = Z Wi [(2 - yC) + (E +yi) :| —ome  withw; = Y e (G.11)
i#c 4 ’
J#c

With such a loss and classical data augmentation, it is possible to achieve more than 91%
of accuracy on CIFAR-10 dataset. This loss and a special train step have been implemented in
DEEL.LIP' library.

G.2.4 Cross-entropy loss for 1-Lipschitz networks

The cross-entropy loss is the most common loss for classification problems. For a single element,
it is expressed as

Z(y,t)=—t-log(o(y)) (G.12)

where y are the N, logits, t the one-hot encoded targets, and ¢ is the softmax function. A version
for Lipschitz networks can be derived with a temperature hyper-parameter to tune the trade-off:

Ze(y,t) = —t-log(o(ty)) (G.13)

Unlike hinge losses where robustness requires large margins, with cross-entropy: the smaller the
temperature, the larger the robustness is.

G.2.5 Other losses for 1-Lipschitz in the literature

In the above subsections, usual losses were expressed with a hyper-parameter to robustify Lip-
schitz networks, which is new and was formalized in Béthune et al. [2021]. Other techniques
were though presented in the literature to deal with the trade-off between accuracy and robust-
ness. Two of them are detailed here.

"https://github.com/deel-ai/deel-1ip distributed under MIT License (MIT)


https://github.com/deel-ai/deel-lip
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G.2.5.1 Lipschitz-margin training

Tsuzuku et al. [2018] proposed to shift the output logits in order to encourage a margin m be-
tween the logit y. of the true class and other logits:

Vi£c, yi+<yi+m (G.14)

Any common loss is then applied on the shifted logits. In their paper, the authors applied the
standard cross-entropy. Note that the performance of the trained network is still limited by the
standard cross-entropy where no hyper-parameter is used.

G.2.5.2 Certificate regularization

Singla et al. [2021] introduced a regularization term added to the main loss term .Z(y). This
regularization aims at maximizing the difference between the logit of the target class and the
highest other logits:

+
Z(y,t) =L(y,1) —V(%—ggm) (G.15)

where 7 is the regularization factor. Note that this regularization term can be compared to the KR
term in hKR (hinge-Kantorovich-Rubinstein) loss. For more details on hKR loss, see Confiance
EC4 report. Both regularization term and KR term tend to move the logit of the true class away
from the other logits. In other terms, these terms tend to move the input far from the decision
boundary. Like in Tsuzuku et al. [2018], there is no hyper-parameter in the standard loss ¢
chosen by the authors.

G.2.6 Summary table

Table G.1 summarizes the different losses to make Lipschitz networks robust.

Loss Standard Robust
Cross-entropy —t-log(o(y)) —t-log(o(ty))
Hinge (1—t-y)* (m—t-y)*
Squared hinge (1—t- y)+2 (m—t- y)Jr2
hKR N/A KR + a hinge
Squared hKR N/A KR + « squared_hinge
L-margin training N/A shifted logits: y; <~ y;+m
Certificate regul N/A Uy, t)—v (yc — MaXx;4 yl-) *

Table G.1: Losses for 1-Lipschitz networks

G.2.7 Experiments on CIFAR-10

Losses for 1-Lipschitz are tested on CIFAR-10 dataset. The performance of networks trained
with different losses is measured with the accuracy on the test set. Regarding robustness, it can


https://irtsystemx.sharepoint.com/:b:/s/IAdeConfiance833/EYLNaI95xZBInp73HQveMy8BrcbqP2v4gKzWducvJ5rSbQ?e=rJk9P3
https://irtsystemx.sharepoint.com/:b:/s/IAdeConfiance833/EYLNaI95xZBInp73HQveMy8BrcbqP2v4gKzWducvJ5rSbQ?e=rJk9P3
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be measured with different metrics, like robust accuracy using adversarial attacks or certified
accuracy for a given perturbation strength. Here, we measure robustness with the KR value on
the test set, which represents how large the output logits are, i.e. how far the elements are from
the decision boundary. The larger the KR is, the more robust the network is. Code to reproduce
experiments is available in the corresponding Gitlab repo.

Fig. G.1 highlights the trade-off between accuracy and robustness. Each point represents
a trained model with a specific loss (defined by the color and shape of the point). Note that
hinge losses are presented in their one-vs-one version. The accuracy / robustness trade-off is
emphasized by the Pareto front emerging with the points. We notice that some losses never
reach this front, meaning that they are not competitive compared to others close to the front.
This is the case for all squared hinge losses: centered and uncentered squared hinge, centered
and uncentered squared hKR. In contrast, some losses are present on the Pareto front: cross-
entropy, centered hinge and centered weighted hinge losses. Depending on the side of the front,
one loss is more efficient than the others. For instance, for high accuracy and low robustness, the
centered hinge and weighted hinge losses seem better. However, for lower accuracy and higher
robustness, the cross-entropy loss gives better results.

Moreover, the uncentered losses (uncentered hinge, squared hinge, hKR and squared hKR)
are almost always worse than their centered counterparts. Finally, the weighted hinge, a gener-
alization between one-vs-all and one-vs-one hinge losses, have two hyper-parameters, the hinge
margin and the softmax temperature. From these experiments, we cannot conclude on the best
choice for temperature: the best networks on the Pareto front do not always have the same
temperature.

In conclusion, we encourage to use either cross-entropy or centered one-vs-one hinge loss
to maximize the accuracy and robustness performances. The temperature in cross-entropy or the
margin in hinge loss must be tweaked for the desired trade-off.

G.3. Application to Renault Welding UC

1-Lipschitz networks have been applied on the Renault Welding UC. Losses for 1-Lipschitz
were tested with different values of hyper-parameters, leading to more accurate or more robust
networks.

Code is available on the corresponding Gitlab repo. Like our other experiments, trainings
are based on the TensorFlow/Keras framework and deel-lip library.

G.3.1 Configuration of the experiments
G.3.1.1 Dataset used

The Renault Welding dataset consists of images of weldings from different industrial parts and
multiple cameras, called cordons. The problem can be seen as a binary classification problem
on good ("OK") and bad ("RETOUCHE") weldings. Our study focused on a single cordon,
c19 (see Fig G.2), containing about 1500 images with 80% of OK weldings and 20% of RE-
TOUCHE weldings. As no split is provided with the dataset, we decided to split the c19 dataset
into train/validation/test subsets of respectively 80% / 10% / 10% images. The test set is thus


https://git.irt-systemx.fr/confianceai/ec_4/as11_uc
https://git.irt-systemx.fr/confianceai/ec_4/as11_uc
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Figure G.1: Accuracy-robustness trade-off for models trained with different losses and their
hyper-parameters. The x-axis is the accuracy on the validation set and the y-axis is the validation
KR metric, representing the robustness of the network.

composed of 121 OK images and 30 RETOUCHE images. For reproducibility and comparison
purposes, these splits are provided in CSV files in the Gitlab repo.

Figure G.2: Example of an OK welding image from cordon c19 in Renault Welding dataset.
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Since the dataset is heavily imbalanced, the train set is equalized by duplicating RETOUCHE
images multiple times in order to have the same number of OK and RETOUCHE images in the
train set. A CSV file with a balanced train set is also available.

Finally, the images are pre-processed: resized to 224x224 and rescaled to float values be-
tween 0 and 1.

G.3.1.2 Training configuration

We trained a small VGG-like model with 9 convolutional layers and 2 fully-connected layers:
C32-PL-C64-PL-C128-PL-C128-C128 - PL - C256 - C256 - PL - C512 - C512 - GPL - FC256 - FC1

with Cxx for a convolutional layer with xx filters, FCxx a fully-connected layer with xx neurons,
PL a 2x2 pooling layer and GPL a global pooling layer. Convolutional and fully-connected
layers are followed by an activation layer.

During training, the train set is augmented with simple random operations: brightness, con-
trast, saturation, Hue offset, zoom in. Note that only a few augmentations were used, so the
trained network is not designed to be robust against specific perturbations, such as rotations,
blur or dead pixels. But if required, data augmentation can be improved to deal with such alter-
ations.

The Adam optimizer is used with a cosine decay learning rate. Please refer to the report of
batch 1 for guidelines on how to build and train 1-Lipschitz networks.

G.3.1.3 Tested losses for 1-Lipschitz

The losses for 1-Lipschitz presented in the previous section were tested on this use case to
handle the trade-off between accuracy and robustness. Results for only some losses are given
in Sec. G.3.3: hinge, hKR and cross-entropy. The results for other losses are similar, but not
presented to ease the readability.

G.3.2 Performance metrics

The performance of networks is measured with the F; score on the test set. F; metric was chosen
because it is better suited than accuracy for imbalanced datasets.

To measure robustness, the networks are attacked with adversarial methods, such as L2-PGD
or DeepFool: for a given perturbation budget &, the attacker tries to find the best adversarial
example satisfying the budget constraint. The Fj score is then measured using the obtained
adversarial images for a given budget ¢; it is called robust F; score. The more robust the network
is, the smaller the gap is between robust and clean F; scores.

Attacks are run for multiple perturbation budgets € in order to see the evolution of the robust
Fj score as a function of €.
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G.3.3 Results
G.3.3.1 Robust F| scores under adversarial attacks

Fig. G.3 provides an understanding about the effect of loss hyper-parameter. Each line represents
the robust F; score under DeepFool attack for a given trained network:

* astandard network (gray line) is accurate (high F; score when no attack, i.e. € =0). How-
ever, the score dramatically drops when attacking the network, even for small perturbation
strength (i.e. small €).

* a 1-Lipschitz network was trained with a robust hinge loss and a margin m = 0.5 (blue
line). The clean score is very high, as high as for the standard network. Moreover, the
network is more robust than the standard network.

* a 1-Lipschitz network was trained with an even more robust hinge loss using m = 5 (red
line). The network is very robust to perturbation, but with a lower clean performance. It
illustrates the trade-off between accuracy and robustness.

G.3.3.2 ROC curves

Another visualization for binary classification is the ROC curve (Receiver Operating Charac-
teristic) and the corresponding AUC (Area Under Curve which is also a good metric to measure
performance -but not for robustness-). Fig. G.4 plots the ROC curves for the different models.
The standard model shows the best AUROC, which reflects the F; score. However, depending
on if we prefer to emphasize the precision or recall score, the robust models can achieve preci-
sion or recall by changing the decision boundary (red dots in ROC represent the default decision
boundary set to zero). Note that modifying the decision boundary to focus on either precision or
recall will modify the success of adversarial attacks and change the robust performance of the
models.

G.3.3.3 Adversarial perturbations

Finally, Fig. G.5 exhibits the adversarial perturbation, obtained using DeepFool, that changes the
classification. We compare the perturbation for the standard network and for a robust 1-Lipschitz
network. The figure clearly highlights that the adversarial perturbations for a Lipschitz network
are structured and condensed on the welding. In contrast, the perturbations for the standard
network are totally noisy without any structure.

Moreover, the L, norm of the adversarial perturbation (value above each perturbation im-
age) is much larger for 1-Lipschitz networks than for standard networks, confirming the higher
robustness of Lipschitz models.

G.4. Robust segmentation with 1-Lipschitz networks

There is no mention of Lipschitz networks applied to semantic segmentation in the literature.
But this is a natural extension of our works on image classification. This section presents our
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Figure G.3: Robust F; score as a function of the attack perturbation budget €. The three curves
correspond to three trained networks. The blue network is a standard network with no Lipschitz
constraint. The orange one is a 1-Lipschitz network trained with a robust hinge loss m = 0.5.
The purple network is a 1-Lipschitz network trained with an even more robust hinge loss m = 5.

preliminary works applied on a toy public dataset and on Valeo Woodscape UC.

G.4.1 Network architecture

The task of image semantic segmentation is to predict a class for every pixel of the input image.
The first known NN architectures for this specific task were proposed in 2015 and several more
complex and more efficient networks have been proposed ever since. Here is a non-exhaustive
list of the most famous architectures:

* Fully Convolutional Network (FCN) Long et al. [2015]
* U-Net Ronneberger et al. [2015]
* Pyramid Scene Parsing Network (PSPNet) Zhao et al. [2017]

* DeepLab (Chen et al. [2017]) and all its versions. DeepLab v3+ is one of the most used
architectures nowadays.
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Figure G.4: ROC curves and their corresponding AUROC scores for the trained models. The last
one is the standard model without Lipschitz constraints. Red dots represent the default decision
boundary set to zero. If we want to focus on either precision or recall, the decision boundary
can be moved along the curve and would change the F; score as well as the robustness of the
network.

The common strategy in these architectures is to stack an encoder part to extract features and
a decoder network to propagate the features in the spatial domain. To improve spatial resolution,
they collect information at different resolutions. Each architecture has its own way of collecting
spatial information through multiple resolutions: skip connections, atrous convolutions, spatial
pyramid pooling, etc.

In this study, we first focus on the simplest architectures, FCN and U-Net, to build Lipschitz
counterparts. The FCN architecture proposed by Long et al. [2015] is the most simple one: an
encoder network (VGG16 in the original paper) reduces the spatial dimensions with a factor of
32 (e.g. from size 224x224 to 7x7). A 32x upsampling layer is appended to recover the input
shape. This architecture is called FCN-32s. To improve spatial resolution of the prediction,
FCN-16s and FCN-8s architectures combine predictions at different intermediate layers (i.e. at
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Figure G.5: Adversarial perturbations obtained by DeepFool attack on the standard network and
a robust 1-Lipschitz network.

higher resolutions) to provide finer details. Fig. G.6 presents these FCN architectures. The U-
Net in Ronneberger et al. [2015] is very similar to FCN but proposes to concatenate predictions
in the decoder using all intermediate layers of the encoder.

The deel-lip library was originally not suited to build such networks because some Lipschitz
layers were not available, especially the transposed convolutional layer. These new features have
been implemented in the latest version (as of December 2022). More complex architectures were
not considered but they could be studied in future works.
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Figure G.6: Fully Convolutional Network (FCN) architecture, from Long et al. [2015]
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G.4.2 Toy dataset: Oxford IIIT Pets

Before tackling real use cases, we decided to work with a toy public dataset called Oxford-
IIIT Pet Dataset. The dataset contains images of pets (cats and dogs) with trimap annotations:
foreground, background and border (a blended zone where the foreground and background are
not well-defined). The first two columns in Fig. G.7 display some examples of the dataset.

G.4.2.1 Robust training

We trained a Fully Convolutional Network (FCN) with a small VGG-like encoder. The robust
cross-entropy loss was used with various temperatures: lower temperature means more robust
networks. Other losses are sometimes used for segmentation, like focal loss or Dice loss. But
the cross-entropy loss remains the most frequent.

The mloU score is a common metric to evaluate semantic segmentation tasks. It measures
the intersection over union (IoU) between the ground truth mask and the prediction for each
class, then averages across the classes.

Finally, like classification, the robustness is measured under adversarial attacks. We imple-
mented the L2-PGD attack for segmentation. We then evaluate the network with the obtained
adversarial images to measure the robust mloU.

G.4.2.2 Results

For a qualitative visualization of robustness, we first show the prediction maps of six images
and their adversarial images after the attack. These segmentation maps for a standard (non-
robust) network are presented in Fig. G.7 (columns 3 and 4). The same maps are presented for
a robust 1-Lipschitz network (columns 5 and 6). The same conclusions as for classification can
be drawn: even if the robust network predicts segmentation maps at a slightly lower quality, the
predictions on the adversarial images are far better. This is especially visible on the second-last
image (the spotty kitten) where the attack on the standard network can make the cat disappear
in the segmentation map. However, the prediction for the robust 1-Lipschitz network is almost
unaltered.

G.4.3 Valeo Woodscape UC

The 1-Lipschitz FCN architecture was applied on the Valeo Woodscape use case. This UC
contains urban scene images from four fish-eye cameras surrounding the car. The segmentation
annotations contain ten categories of objects: void, road, lanes, curbs, rider, person, vehicles,
bicycle, motorcycle and traffic sign.

G.4.3.1 Robust training

We trained the same network as in Sec. G.4.2, a FCN network with a small VGG-like encoder.
As the architecture is rather small, the performance of the network is not expected to be as
competitive as the DeepLab v3+ network provided by Valeo. The objective is rather to compare
the performance between the standard network and its same 1-Lipschitz architecture.


https://www.robots.ox.ac.uk/~vgg/data/pets/
https://www.robots.ox.ac.uk/~vgg/data/pets/
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Figure G.7: Standard and robust segmentation maps on Oxford IIIT Pets. The first two columns
show six images from the test set and their ground truth segmentation maps. The third and fourth
columns are the prediction maps of the original and adversarial images for a standard network.
The two last columns are the prediction maps of the original and adversarial images for a robust
1-Lipschitz network.

The training set is slightly augmented to improve generalization (brightness, contrast, satu-
ration, flip left/right). A standard cross-entropy loss is used to train the standard network and a
cross-entropy loss with temperature is applied for the Lipschitz model. The networks are trained
for 300 epochs with a cosine learning rate scheduler.

The trained models are then attacked with L2-PGD and a perturbation budget of 1. We
decided to apply targeted attacks, i.e attacks where we want to change classification towards a
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specific class. The targeted class is "void": the attack tries to change predictions of all pixels to
be "void" (background). In other words, we want to make objects disappear, such as vehicles,
pedestrians or even roads.

G.4.3.2 Results

Fig. G.8 presents our first results of training and attacking a robust Lipschitz network on Valeo
Woodscape UC. For both the standard and the 1-Lipschitz networks, we show the prediction
maps for the original image and the adversarial image. Values above each segmentation map
give the mloU of the current prediction compared to the ground truth.

The trade-off between accuracy and robustness is emphasized once again. The standard net-
works exhibit better clean mloU scores than the robust Lipschitz network: for the 10 randomly
chosen images, the standard network yields better scores. However, under attack, the perfor-
mance of the standard network drops, whereas the 1-Lipschitz network is more robust to the
attack: here the robust mloU is better for the Lipschitz network on 8 images out of 10. Ta-
ble G.2 below summarizes the clean and robust mloU on the 10 images for both standard and
1-Lipschitz networks.

Qualitatively, the attack is very efficient on the standard network. The objects, such as roads
or vehicles, are "replaced" by the void category. In contrast, the Lipschitz network is almost not
altered by the attack.

Standard 1-Lipschitz
Clean mIoU 0.443 0.338
Robust mIoU 0.245 0.334

Table G.2: Clean and robust mloUs averaged on 10 images of the Valeo Woodscape test set. The
mloU of the 1-Lipschitz network is almost unaltered by the L2-PGD adversarial attack, whereas
the standard network is very sensitive to perturbations: the mloU dramatically drops after attack.

G.5. Orthogonal convolution

In this part we will give a summary of the article "Existence, Stability and Scalability of Or-
thogonal Convolutional Neural Networks" by Achour et al. [2021] developed within the DEEL
project (www.deel.ai).

1-Lipschitz layers have interesting properties but do not prevent vanishing gradient: the
highest singular value is one, but other singular values can be very small. Using orthogonal
layers ensures that all singular values are equal to one, thus preserving gradient norm. Making a
fully-connected layer orthogonal is possible by orthogonalizing its weight matrix. However, to
the best of our knowledge, the understanding of orthogonal convolutional layers is weak. There
is no paper focusing on the theoretical properties of orthogonal convolutional layers. Moreover,
most papers only focus on kernel orthogonalization, which cannot imply the orthogonality of
the convolutional layer.


www.deel.ai
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Achour et al. [2021] consider the architecture of a convolutional layer as characterized by
(M,C,k,S), where M is the number of output channels, C of input channels, convolution kernels
are of size k x k and the stride parameter is S. Thus, applied on input channels of size SN x SN,
the M output channels are of size N x N. We denote by K € RY*C*kxk the kernel tensor and by
€ RMN’XCS'N? the matrix that applies the convolutional layer of architecture (M, C,k,S) to C
vectorized channels of size SN x SN.

The paper describes necessary and sufficient conditions for the existence of an orthogonal
convolution layer under the circular boundary conditions:

» Row Orthogonality (RO) case, i.e. M < CS?: if and only if M < Ck>.
* Column Orthogonality (CO) case, i.e. M > CS2: if and onlyif S<k.

They also denote that orthogonal convolutions are dummies when considering zero-padding, or
"valid" boundary conditions.

Besides they rely on a previous work of Wang et al. [2020], which has introduced a regu-
larization method called L,,;;. Denoting P = L%J S, Lowp : RMXCxkxk __y R is defined as
follows

* In the RO case, M < CS?:

Lorin(K) = ||conv(K, K, padding zero = P,stride = S) — L ||% . (G.16)

* In the CO case, M > CS?:

Loy (K) = |[conv(K, K, padding zero = P,stride = §) — L||% — (M — CS?) .
such that

J¢ orthogonal — Lyrn(K) = 0.

Since L,.;(K) = 0 will never be achieved in practice, Achour et al. [2021] have studied and
proved

¢ Stability with regard to minimization errors Does .7 still have good ‘approximate
orthogonality properties’ when L,,,;(K) is small but non zero? Without this guarantee,
it could happen that L,,;(K) = 10~° and ||.# #T —Id|, = 10°. This would make the
regularization with L, useless, unless the algorithm reaches L, (K) = 0.

* Scalability and stability with regard to N: Remarking that, for a given kernel tensor K,
Lorn(K) is independent of N but the layer transform matrix .2~ depends on N: when
Lyrn(K) is small, does .# remain approximately orthogonal and isometric when N grows?
If so, the regularization with L,,,;, remains efficient even for very large N.

* Optimization: Does the landscape of L, lend itself to global optimization?

The regularization term L,,;;,(K) to enforce orthogonality in convolutional layers was intro-
duced in the deel-lip library as an alternative to the legacy 1-Lipschitz SpectralConv2D layer.
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G.6. Conclusions and perspectives

For a summary of advantages and shortcomings of 1-Lipschitz networks, the reader can be
referred to the Confiance EC4 report of batch 1.

G.6.0.1 New losses for 1-Lipschitz networks

The loss is the key part for handling the trade-off between accuracy and robustness. Our works
aimed at deriving new losses for 1-Lipschitz from standard ones and at improving the hKR loss.
The loss hyper-parameters allow tuning the expected robustness level. The results on CIFAR-10
and on Renault Welding UC confirm the good performance of 1-Lipschitz networks in terms
of accuracy and robustness, compared to standard networks. Some of these new losses were
integrated into the deel-lip library, especially TauCategoricalCrossentropy, weighted hinge
in MulticlassHinge and MulticlassHKR, and one-vs-all hinge in CategoricalHinge.

G.6.0.2 Robust semantic segmentation

1-Lipschitz networks were successfully applied to image segmentation. The results on the
Oxford-IIIT Pet dataset are impressive with good performance under adversarial attacks com-
pared to standard networks. A preliminary study was run on Valeo Woodscape UC with promis-
ing results for 1-Lipschitz networks. Adversarial attacks on the standard network succeed in
removing objects from the segmentation map, whereas the predictions of the Lipschitz network
are almost not altered. These preliminary results should be confirmed with more complex archi-
tectures and new losses for 1-Lipschitz based on focal loss.

G.6.0.3 Orthogonal convolution

The works about orthogonal convolution done in the DEEL program, implemented in deel-lip
library and were used in Confiance.ai. This transfer from academic context to library develop-
ment enhances the possibilities for an end-user to build more powerful networks by relaxing the
orthogonalization constraint and reducing the memory use.

G.6.0.4 Perspectives

Future works can be categorized in different axes:

» Applications: 1-Lipschitz networks can be applied on new tasks. After consolidating our
works on segmentation, we plan to extend Lipschitz networks to object detection.

* Theoretical works: some academic works are ongoing, such as the estimation of the Lip-
schitz constant with the power iteration algorithm for convolutional layers.

* Links with other works within Confiance.ai: 1-Lipschitz networks can be used and con-
fronted to other topics studied in Confiance.ai program, e.g. explainability, conformal
prediction, environmental alterations, etc.
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Standard network Lipschitz network
GT mask Clean mloU=0.424 Adv mioU=0.341 Clean mloU=0.326 Adv mloU=0.322

Original img

GT mask Clean mioU=0.507 Adv mioU=0.172 Clean mioU=0.375 Adv mioU=0.369

GT mask Clean mloU=0.487 Adv mioU=0.346 Clean mloU=0.435 Adv mloU=0.435

GT mask Clean mloU=0.397 Adv mioU=0.171 Clean mioU=0.363 Adv mioU=0.362

GT mask Clean mloU=0.312 Adv mloU=0.190 Clean mloU=0.305 Adv mloU=0.311

GT mask Clean mloU=0.411 Adv mioU=0.095 Clean mioU=0.341 Adv mloU=0.340

GT mask Clean mioU=0.501 Adv mioU=0.347 Clean mioU=0.306 Adv mioU=0.303

o

GT mask Clean mloU=0.552 Adv mloU=0.290 Clean mloU=0.420 Adv mloU=0.421

GT mask Clean mioU=0.292 Adv mioU=0.213 Clean mloU=0.254 Adv mioU=0.248

GT mask Clean mloU=0.336 Adv mloU=0.153 Clean mloU=0.296 Adv mloU=0.289

Figure G.8: Standard and robust segmentation on Valeo Woodscape. The two first columns show
ten images from the validation set and their ground truth segmentation maps. The third and
fourth columns are the prediction maps of the original and adversarial images for the standard
network. The two last columns are the prediction maps for the robust 1-Lipschitz network.






Chapter H

Conclusion

In this document, we have shown Methods and Evaluation tools for Robust Al in Industrial
applications. These theoretical and numerical findings are shared through this report in addition
to the software and documentation that is delivered to the confiance.ai program. The guidelines
and use case applications will thus be available in the confiance.ai environment.

The goal here was to share the tools and results that were obtained during the batch 2 of
EC4. These methods often share the same use cases as a basis to demonstrate their performance.
In this way, we see that all activities are strongly complementary.

For instance, the program will benefit from the progress of "Environment Alterations of Al
models" with a particular focus on the Renault welding Use case under perturbations, such as
patch attacks or ML watermarking. "Lipschitz networks" were also applied to the same use case.
This latter project is an example of a methodological contribution that also provides an accessi-
ble open-source software aiming at providing the best possible trade-off between accuracy and
robustness.

From the uncertainty quantification standpoint, EC4 has developed beyond state of the art
techniques on both a method independent of the predictive model i.e. "Conformal prediction”
and a tool specific for deep learning called "Bayesian Neural Networks". Both pieces of soft-
ware are available for the confiance.ai program with application examples on the Air Liquide
demand forecast use case.

We also provide guidelines on the use of "Robustification methods based on Neural Differ-
ential Equations" for the Air Liquide Cylinder Counting.
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